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* minimum coverage is close to 0%
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Confidence Intervals and Limits
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Note: Upper limits are just one-sided confidence intervals at X% CL
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e Difficulty of setting confidence intervals at physical boundaries (with
constraints), for example:

cross section > 0
O =x -y (for example m2 = E2 — p2)
e Assume that we know @ > 0, the upper limit is:

Oup =0+ 0,1 (1 —B)  sofor 95% CL ®-1(0.95) = 1.65



e Difficulty of setting confidence intervals at physical boundaries (with
constraints), for example:

cross section > 0
O =x -y (for example m2 = E2 — p2)
e Assume that we know @ > 0, the upper limit is:
up =0 + 0,871 (1 —B)  so for 95% CL ®-1(0.95) = 1.65

e Now consider the case where we measured § = — 2
and the resolution of our experimentis 6; = 1
We get:
Oup = —0.35 at 95% CL and we did not learn anything!

Note that from a frequentist’ point of view, this is totally fine. If we performed the experiment
a large number of times, we would end up with a meaningful physical bound. This does not
change the fact, that we did not learn anything from our experiment at hand.



Possible Solutions
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|. Increase the CL
fix the negative limit on x by adjusting x.p until it becomes positive:

Ouwp = 0.326 at 99% CL



Possible Solutions

|. Increase the CL
fix the negative limit on x by adjusting xp until it becomes positive:

euP = 0.326 at 99% CL Results in a solution much better than the
Ouwp = 107> at 97.7725% CL  experimental resolution! BAD!
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|. Increase the CL

fix the negative limit on x by adjusting x.p until it becomes positive:

e“P =0.326 at 99% CL Results in a solution much better than the
Ouw = 107> at 97.7725% CL  experimental resolution! BAD!

2. Shift the measurement

fup = max {é, O} aéCI)_l(l — B)

always results in positive limits on x
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e“P =0.326 at 99% CL Results in a solution much better than the
Ouw = 107> at 97.7725% CL  experimental resolution! BAD!

Shift the measurement

Coverage probability not
given anymore!

fup = max {é, O} aéCI)_l(l — B)

always results in positive limits on x



Increase the CL
fix the negative limit on x by adjusting xp until it becomes positive:

e“P =0.326 at 99% CL Results in a solution much better than the
Ouwp = 1075 at 97.7725% CL  experimental resolution! BAD!

Shift the measurement

) C bability not
Hup — max {97 O} 1 Uéq)_1(1 o 5) overage probabllity no

given anymore!

always results in positive limits on x

Bayes Theorem

Can encode our prior knowledge in the prior 11(9)!

B|A)P(A)
P(B)




3. Bayes Theorem
d... observed data

p(0]d) — L(d|0)m(0) L... likelihood to observe the data
[ L(d|0")m(0")d6’ ... prior knowledge
p(O|d)... estimator for 6 (ML)
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and encode the prior knowledge: () = { 0 0 2 0



3. Bayes Theorem
d... observed data
p(0]d) — L(d|0)m(0) L... likelihood to observe the data
[ L(d|0")m(0")d6’ ... prior knowledge
p(O|d)... estimator for 6 (ML)

Can now calculate an upper limit for given probability o :

Oup 0O
&Z/ p(dld) and S = p(0|d)

— OO Hdown

1 g >0
and encode the prior knowledge: 7(0) = { 0 0 <0

We get:

with N = / L(d|6")m(6")do’

solve numerically for By



95% CL upper limit
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Poisson with Background

Realistic case: n =n.,+ n

» Both, ns and np are Poisson variables with means vs, v

(Vs + vp)" o (vt )

> Prob.function f(n;vs, 1) = ,
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Realistic case: n =n.,+ n

> Both, ns and np are Poisson variables with means Vs, Vb

(VS Vb)ne—(y8+yb)
l

» Prob.function f(n;vs, 1) =

n!
> Upper limits: 2
iy
u u N
vP =vP(r, =0) — 1 :
>ﬂ
T
2
&
@
(&)
No positive upper limit
possible for small n and

large vy, \




Possible solution: Bayesian method

» Write the likelihood function as a function of vs:

(Vs =+ Vb)nObS 6—(1/3—|—Vb)

nobs!

> The posterior becomes

B L(nops|vs)m(vs)
plvslnans) = o (v

L(nObS’VS) —




Possible solution: Bayesian method

> Write the likelihood function as a function of vq: Agreement with

(V -+ Vb)nC’bS B :
L(neps|vs) = ~— — e~ Wstup) previous case (small vp)
OoDSs*

> The posterior becomes

L(nops|vs)m(vs)

)
p(Vs‘nobs) — l?-
J L(nobs|v)m(vy)dv] =
> Integrate to get an upper limit f
. Q
at a given CL |-[3: 8
Nobs 8
e~ (ws"Hw) N~ Lpup 4y
.
—0 . )
5 — nnobs i
e—l/b Z %Vgl’ 0 L L 1 1 1
= o 2 4 6 8 10 12

(solve numerically for v ") Vy



* Incorporate knowledge about what is signal and background

* Define “test statistic” Q (function of observables and parameters) which
“ranks” experiments from the least to most “signal-like”

e Likelihood ratios for signal and background hypotheses are used as the

test statistic: C(Nd 2, Ng -+ NB)
atas
E(Ndataa NB)




* Incorporate knowledge about what is signal and background

* Define “test statistic” Q (function of observables and parameters) which
“ranks” experiments from the least to most “signal-like”

e Likelihood ratios for signal and background hypotheses are used as the

test statistic: C(Nd 2, Ng -+ NB)
atas
»C(Ndataa NB)

where Qobs P

Por(O< 0. — s+b 1
s+b(Q < Qobs) /_x 0 dQ)

e and dP,,/dQ is the p.d.f. of Q for the S+B hypothesis

. Qobs (] I)b
e and analoguos: F,(Q < Qops) = /

e dQ) 1Q



CLs

Method
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* The problem of unphysical results in case of small signals in the presence
of background is avoided by normalising the S+B hypothesis to the B-

only hypothesis: OT,

L CLs—I—b
© CLy

* Tries to approximate the confidence in the S-hypothesis in the absence

of background
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Excluding (or Discovering) the Higgs Boson

ratio of 95% C.L.

excluded x-section to

predicted SM
X-section

= | means that the SM-
X-section is excluded
(large x-sections are

easier to exclude)

July 2012

Observed (Asymptotic) CMS Pre‘liminary.
........ Median Expected (Asymptotic) [S=7TeV. L =5.1fb"
[ =+ 10 Expected -  o=9110
[ ] =20 Expected V's=8TeV,L=5.31fb

| and 2 sigma
uncertainties of
expected exclusion
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here we exclude

based on simulation

expected exclusion

here we exclude a
mass range even if
it is not expected

less than expected
(not possible to
exclude something

that exists!)

this is about

exclusion, what

about discovery!?
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* Repeat many toy
experiments and
calculate the probability
that the observed excess
is a statistical fluctuation

e As a function of the
mass

* 3 sigma excesses (called
evidence) often

disappearec
though the
of statistica

was small...

, even
brobability

fluctuation

July 2012

Interpretation Requires LEE

CMS Preliminary
Vs=7TeV,L=5.1fb"
ls=8TeV,L=523 ﬂo;1

(‘7 \ \ z z z N
N o
Observed (Asymptotic) - 30
1x SM Higgs Expected (Asimov)
104 b : / --------- 7 TeV Observed (Asymptotic)
i 5 5 V 8 TeV Observed (Asymptotic) m 40
1 0-5 IS A T B RN R R BN AR SR A B R N T B
110 115 120 125 130 135 140 145 150
m, (GeV)

e 5 sigma excesses are called “discovery”



