Confidence Interval Estimation Part II

Roman Kogler (roman.kogler@desy.de)

Terascale Statistics School 2023 DESY Hamburg, July 2023

Poisson Distribution: Choice of $\sigma = \sqrt{n}$

- Best estimate of µ:
 Observation n
- Calculate the uncertainty as √n:

$$n - \sqrt{n} < \mu < n + \sqrt{n}$$

• Serious undercoverage

minimum coverage is close to 0%

Confidence Intervals and Limits

Note: Upper limits are just one-sided confidence intervals at X% CL

Limits

 Difficulty of setting confidence intervals at physical boundaries (with constraints), for example:

cross section > 0

$$\theta = x - y$$
 (for example $m^2 = E^2 - p^2$)

ullet Assume that we know $\hat{ heta} > 0$, the upper limit is:

$$\theta_{\rm up} = \hat{\theta} + \sigma_{\hat{\theta}} \Phi^{-1} (1 - \beta)$$
 so for 95% CL $\Phi^{-1} (0.95) = 1.65$

Limits

 Difficulty of setting confidence intervals at physical boundaries (with constraints), for example:

cross section > 0

$$\theta = x - y$$
 (for example $m^2 = E^2 - p^2$)

ullet Assume that we know $\hat{ heta} > 0$, the upper limit is:

$$\theta_{\rm up} = \hat{\theta} + \sigma_{\hat{\theta}} \Phi^{-1} (1 - \beta)$$
 so for 95% CL $\Phi^{-1} (0.95) = 1.65$

• Now consider the case where we measured $\hat{\theta}=-2$ and the resolution of our experiment is $\sigma_{\hat{\theta}}=1$ We get:

$$\theta_{up} = -0.35$$
 at 95% CL and we did not learn anything!

Note that from a frequentist' point of view, this is totally fine. If we performed the experiment a large number of times, we would end up with a meaningful physical bound. This does not change the fact, that we did not learn anything from our experiment at hand.

I. Increase the CL

fix the negative limit on x by adjusting x_{up} until it becomes positive:

$$\theta_{up} = 0.326 \text{ at } 99\% \text{ CL}$$

I. Increase the CL

fix the negative limit on x by adjusting x_{up} until it becomes positive:

$$\theta_{up} = 0.326 \text{ at } 99\% \text{ CL}$$

$$\theta_{up} = 10^{-5}$$
 at 97.7725% CL

Results in a solution much better than the experimental resolution! BAD!

1. Increase the CL

fix the negative limit on x by adjusting x_{up} until it becomes positive:

$$\theta_{up} = 0.326 \text{ at } 99\% \text{ CL}$$

$$\theta_{up} = 10^{-5}$$
 at 97.7725% CL

Results in a solution much better than the experimental resolution! BAD!

2. Shift the measurement

$$\theta_{\rm up} = \max \left[\hat{\theta}, 0 \right] + \sigma_{\hat{\theta}} \Phi^{-1} (1 - \beta)$$

always results in positive limits on x

1. Increase the CL

fix the negative limit on x by adjusting x_{up} until it becomes positive:

$$\theta_{up} = 0.326 \text{ at } 99\% \text{ CL}$$

$$\theta_{up} = 10^{-5}$$
 at 97.7725% CL

Results in a solution much better than the experimental resolution! BAD!

2. Shift the measurement

$$\theta_{\rm up} = \max \left[\hat{\theta}, 0 \right] + \sigma_{\hat{\theta}} \Phi^{-1} (1 - \beta)$$

always results in positive limits on x

Coverage probability not given anymore!

1. Increase the CL

fix the negative limit on x by adjusting x_{up} until it becomes positive:

$$\theta_{up} = 0.326 \text{ at } 99\% \text{ CL}$$

$$\theta_{up} = 10^{-5}$$
 at 97.7725% CL

Results in a solution much better than the experimental resolution! BAD!

2. Shift the measurement

$$\theta_{\rm up} = \max \left[\hat{\theta}, 0 \right] + \sigma_{\hat{\theta}} \Phi^{-1} (1 - \beta)$$

always results in positive limits on x

Coverage probability not given anymore!

3. Bayes Theorem

Can encode our prior knowledge in the prior $\pi(\theta)$!

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \quad \text{with} \quad P(B) = \sum_i P(B|A_i)P(A_i)$$

3. Bayes Theorem

$$p(\theta|\mathbf{d}) = \frac{L(\mathbf{d}|\theta)\pi(\theta)}{\int L(\mathbf{d}|\theta')\pi(\theta')d\theta'}$$

d... observed data

L... likelihood to observe the data

π... prior knowledge

 $p(\theta|\mathbf{d})...$ estimator for θ (ML)

3. Bayes Theorem

$$p(\theta|\mathbf{d}) = \frac{L(\mathbf{d}|\theta)\pi(\theta)}{\int L(\mathbf{d}|\theta')\pi(\theta')d\theta'}$$

d... observed data

L... likelihood to observe the data

π... prior knowledge

 $p(\theta|\mathbf{d})$... estimator for θ (ML)

Can now calculate an upper limit for given probability α :

$$\alpha = \int_{-\infty}^{\theta_{\rm up}} p(\theta|\mathbf{d}) \quad \text{and} \quad \beta = \int_{\theta_{\rm down}}^{\infty} p(\theta|\mathbf{d})$$

and encode the prior knowledge: $\pi(\theta) = \left\{ \begin{array}{ll} 1 & \quad \theta \geq 0 \\ 0 & \quad \theta < 0 \end{array} \right.$

3. Bayes Theorem

$$p(\theta|\mathbf{d}) = \frac{L(\mathbf{d}|\theta)\pi(\theta)}{\int L(\mathbf{d}|\theta')\pi(\theta')d\theta'}$$

d... observed data

L... likelihood to observe the data

π... prior knowledge

 $p(\theta|\mathbf{d})$... estimator for θ (ML)

Can now calculate an upper limit for given probability α :

$$lpha = \int_{-\infty}^{ heta_{\mathrm{up}}} p(heta | \mathbf{d}) \quad ext{and} \quad eta = \int_{ heta_{\mathrm{down}}}^{\infty} p(heta | \mathbf{d})$$

and encode the prior knowledge: $\pi(\theta) = \left\{ \begin{array}{ll} 1 & \theta \geq 0 \\ 0 & \theta < 0 \end{array} \right.$

We get:

$$1 - \beta = \frac{1}{N} \int_{-\infty}^{\theta_{\rm up}} L(\mathbf{d}|\theta') \pi(\theta') d\theta' \quad \text{with} \quad N = \int_{-\infty}^{\infty} L(\mathbf{d}|\theta') \pi(\theta') d\theta'$$

with
$$N = \int_{-\infty}^{\infty} L(\mathbf{d}| heta')\pi(heta')\mathrm{d} heta'$$

solve numerically for θ_{up}

picture credit: G. Cowan

Realistic case: $n = n_s + n_b$

- ▶ Both, n_s and n_b are Poisson variables with means v_s , v_b
- Prob. function $f(n; \nu_s, \nu_b) = \frac{(\nu_s + \nu_b)^n}{n!} e^{-(\nu_s + \nu_b)}$

Realistic case: $n = n_s + n_b$

- ▶ Both, n_s and n_b are Poisson variables with means V_s, V_b
- Prob. function $f(n; \nu_s, \nu_b) = \frac{(\nu_s + \nu_b)^n}{n!} e^{-(\nu_s + \nu_b)}$
- Upper limits:

$$\nu_s^{\rm up} = \nu_s^{\rm up}(\nu_b = 0) - \nu_b$$

No positive upper limit possible for small n and large V_b

Possible solution: Bayesian method

• Write the likelihood function as a function of v_s :

$$L(n_{\text{obs}}|\nu_s) = \frac{(\nu_s + \nu_b)^{n_{\text{obs}}}}{n_{\text{obs}}!} e^{-(\nu_s + \nu_b)}$$

The posterior becomes

$$p(\nu_s|n_{\text{obs}}) = \frac{L(n_{\text{obs}}|\nu_s)\pi(\nu_s)}{\int L(n_{\text{obs}}|\nu_s')\pi(\nu_s')d\nu_s'}$$

Possible solution: Bayesian method

Write the likelihood function as a function of V_s:

$$L(n_{\text{obs}}|\nu_s) = \frac{(\nu_s + \nu_b)^{n_{\text{obs}}}}{n_{\text{obs}}!} e^{-(\nu_s + \nu_b)}$$

The posterior becomes

The posterior becomes
$$p(\nu_s|n_{\rm obs}) = \frac{L(n_{\rm obs}|\nu_s)\pi(\nu_s)}{\int L(n_{\rm obs}|\nu_s')\pi(\nu_s'){\rm d}\nu_s'}$$
 Integrate to get an upper limit at a given CL I- β :

Integrate to get an upper limit at a given CL I-β:

$$\beta = \frac{e^{-(\nu_s^{\text{up}} + \nu_b)} \sum_{n=0}^{n_{\text{obs}}} \frac{1}{n!} (\nu_s^{\text{up}} + \nu_b)^n}{e^{-\nu_b} \sum_{n=0}^{n_{\text{obs}}} \frac{1}{n!} \nu_b^n}$$

(solve numerically for $\nu_{\rm c}^{\rm up}$)

CLs Method

- Incorporate knowledge about what is signal and background
- Define "test statistic" Q (function of observables and parameters) which "ranks" experiments from the least to most "signal-like"
- Likelihood ratios for signal and background hypotheses are used as the test statistic: $C(N_1, N_2, N_3)$

$$Q = \frac{\mathcal{L}(N_{data}, N_S + N_B)}{\mathcal{L}(N_{data}, N_B)}$$

CLs Method

- Incorporate knowledge about what is signal and background
- Define "test statistic" Q (function of observables and parameters) which "ranks" experiments from the least to most "signal-like"
- Likelihood ratios for signal and background hypotheses are used as the test statistic:

 $Q = \frac{\mathcal{L}(N_{data}, N_S + N_B)}{\mathcal{L}(N_{data}, N_B)}$

• Confidence in signal+background hypothesis $CL_{s+b} = P_{s+b}(Q \le Q_{obs})$ where

 $P_{s+b}(Q \le Q_{obs}) = \int_{-\infty}^{Q_{obs}} \frac{dP_{s+b}}{dQ} dQ$

- and dP_{s+b}/dQ is the p.d.f. of Q for the S+B hypothesis
- Confidence in background-only hypothesis: $CL_b = P_b(Q \le Q_{obs})$
- and analoguos: $P_b(Q \leq Q_{obs}) = \int_{-\infty}^{Q_{obs}} \frac{dP_b}{dQ} dQ$

CLs Method

- The problem of unphysical results in case of small signals in the presence of background is avoided by normalising the S+B hypothesis to the B-only hypothesis: $CL_s = \frac{CL_{s+b}}{CL_b}$
- Tries to approximate the confidence in the S-hypothesis in the absence of background

Excluding (or Discovering) the Higgs Boson

Discovering the Higgs Boson

- Repeat many toy
 experiments and
 calculate the probability
 that the observed excess
 is a statistical fluctuation
- As a function of the mass
- 3 sigma excesses (called evidence) often disappeared, even though the probability of statistical fluctuation was small....

• 5 sigma excesses are called "discovery"