

Future Laser-based THz Light Sources at XFEL

Ilie Radu Lasers group (LAS), EuXFEL

Setting the stage...

European XFEL seeks to provide intense THz and mid-IR radiation in combination with X-ray pulses at all SASE beamlines & instruments

Accelerator-based THz generation, see THz@PITZ

Laser–based THz light sources

THz radiation requirements at EuXFEL:

- **Broadband**, single-cycle THz pulses
- **Narrowband**, multiple-cycle THz pulses
- Large THz pulse energies supporting high-field (E and B) THz pulses
- THz/mid-IR spectral range from 0.1 THz to 30 THz
- Tunable THz central frequency
- CEP-stable THz light pulses
- Variable THz polarization

Utmost importance of a high intensity, ultrashort laser source as a THz driver!

PP laser @ LAS EuXFEL

Laser output at 1030nm: 800 fs @ 0.1 to 4.5 MHz, 40 to 1 mJ/pulse

PP laser @ LAS EuXFEL

Laser output at 1030nm: 800 fs @ 0.1 to 4.5 MHz, 40 to 1 mJ/pulse

Efficient THz generation (bandwidth, pulse energy etc) requires pulse compression <100 fs</p>

Compression scheme using multi-pass Herriott cell in Ar gas

Compression of 1030nm laser beam @ 1.1 MHz; multi-pass Herriott cell

Herriott cell as installed in the R&D lab of LAS group

1060

1080

Compression of 1030nm laser beam @ 1.1 MHz; multi-pass Herriott cell

Compression factor ~20; broadened spectrum supports sub-40 fs @ 1.1 MHz

- Compression setup transmission (HC + GTI's) about 92%, i.e. ~3 mJ/pulse
- Excellent laser intensity profile after HC
- Compressed pulse duration of 45±5 fs

Broadband laser-based THz generation schemes at LAS, EuXFEL

- Lithium Niobate
- Four-fold approach: THz source(s) will deployed depending on the required spectral range, field strength etc (user defined): 0.1 – 2 THz and 0.1 – 30 THz
 - Driven by the pump-proble laser's spectrally broadened and compressed (40-400 fs) high power beam (1030 nm)

BNA (N-benzyl-2-methyl-4-nitroaniline)

- Optimal phase matching around 1000 nm
- Energy conversion efficiencies about 0.8%
- THz crystal of choice @ 1030nm pumping

arXiv:2109.04274

BNA organic crystals

- BNA with different thicknesses
- Near-IR Power-in/ THz power-out test
- 45 fs @ 1030nm and 112 kHz RR

2000 ■— B1B1 (~370 um) 1800 B1A4 (~1000 um) B1B2 (~1200 um) 1600 -ີ _____ 1400 · euergy 1000 1000 Pulse (800 · THz 600 400 200 0 2 3 5 0

BNA crystal pumped at 1030nm and 45 fs

Pump fluence (mJ/cm²)

BNA organic crystals

- THz pulse energies above **1 µJ/pulse**
- Slow' and 'fast' damage above 3 and 4 mJ/cm^2
- 'Slow' damaged xtals still usable (~10% less intensity)
- Accounting for THz air absorption (~45%) and reflective losses (~5%)

BNA crystal pumped at 1030nm and 45 fs

Pump fluence (mJ/cm^2)

European XFEL

BNA organic crystals

Energy conversion efficiency of 0.35%

Expected conversion efficiency of 0.8% (literature work @ 1 kHz RR)

European XFEL

BNA organic crystals

Purchased fused BNA on sapphire plates

Improves BNA cooling, accommodates larger fluences without crystal damage

Optics Express 29, 38084 (2021)

THz generation and detection setups

BNA THz generator; ZnTe/GaP EOS detection

- Commission the BNA generators @ 1030nm & 1.1 MHz
- Measure and optimize THz spectrum + THz field strength

European XFEL

THz setup as installed in the R&D lab of LAS group

THz generation and detection setups

Michelson interferometer

Narrowband, tunable laser-based THz generation schemes at EuXFEL Three-fold approach:

Narrowband, tunable laser-based THz generation schemes at EuXFEL Three-fold approach:

1. Narrowband filtering of broadband THz (0.1-30THz):

- Bandpass THz filters, 84% to 97% transmission
- Variable bandwidth 1% to 20%
- Tunable central frequency, 0.2 THz to 20 THz

www.terahertz.co.uk/qmci; www.soliton-gmbh.de;...

Narrowband, tunable laser-based THz generation schemes at EuXFEL Three-fold approach:

1. Narrowband filtering of broadband THz (0-30THz):

2. Organic-crystal-based difference frequency generation (DFG) of the idlers of two 515nm-pumped OPAs, wing-seeded by a broad-band NOPA:

Makes use of NOPA (800nm) and pump (1030nm) beams of pump-probe laser.

3. Difference frequency generation (DFG) of the signals of two 1030nm-pumped KTA OPAs, seeded by a supercontinuum:

Driven by SCS (EuXFEL), Politecnico di Milano and MPI-MPSD, Hamburg and LAS (EuXFEL)

Narrowband, tunable laser-based THz generation schemes at EuXFEL

2. Organic-crystal-based difference frequency generation (DFG) of the idlers of two 515nm-pumped OPAs, wing-seeded by a broad-band NOPA:

B. Liu et al., Optics Letters 42, 189 (2017)

European XFEL

- 4THz to 18 THz from DSTMS
- ~0.1% conversion efficiency
- Up to 2µJ/pulse
- Up to 3.5 MV/cm THz fields

Narrowband, tunable laser-based THz generation schemes at EuXFEL

3. GaSe-based difference frequency generation (DFG)

A. Sell et al., Optics Letters 33, 2767 (2008)

European XFEL

Summary: Future Laser-based THz generation schemes at LAS, EuXFEL

- Broadband, single-cycle and narrowband, multiple-cycle THz sources to be installed and commissioned at LAS
- Envisioned high THz fields (> 1 MV/cm) in the 0.1 to 30 THz range at high rep-rates (0.1 to 1.1 MHz)
- Implementation of such THz schemes at the XFEL end-stations tailored by user requirements
- Combined THz & X-ray pump-probe measurements

