FELBE & TELBE The High Power Coherent THz/IR Sources at ELBE

J. Michael Klopf (FELBE) Sergey Kovalev (TELBE)

THz@PITZ Workshop *PITZ at DESY in Zeuthen* 2023.03.15

J. Michael Klopf • klopf@hzdr.de • www.hzdr.de • HZDR

ELBE

ELBE Center for High Power Radiation Sources

Mitglied der Helmholtz-Gemeinschaft J. Michael Klopf

klopf@hzdr.de

www.hzdr.de

HZDR

ELBE Accelerator and Secondary Sources

FELBE

Slide 3

ELBE Accelerator

	Thermionic Gun	SRF Gun	
Gun Energy	250 keV	4 MeV	
Electron Beam Energy (linac)	5 – 36 MeV	5-40 MeV	
Bunch Charge	< 100 pC (77 pC typ.)	< 250 pC (200 pC typ.)	
Max. Avg. Beam Current	1.0 mA	200 µA	
Norm. Transverse Emittance	e < 10 mm mrad (rms) < 5 mm mra		
Norm. Longitudinal Emittance	< 100 keV ps (rms)	10 keV ps (rms) ¹⁾	
Micropulse Bunchlength	1 – 5 ps (rms)	2 – 3 ps (rms) ²⁾	
Micropulse Rep. Rate	26 MHz/N (13 MHz - FEL)	10 / 25 / 50 / 100 / 250 kHz 13 MHz	
Macropulse Duration	0.1 – 40 ms / CW	0.1 – 40 ms / CW	
Macropulse Rep. Rate	1 – 25 Hz	1 – 25 Hz	

1) Not measured because no diagnostic, instead ASTRA simulation for 200pC and typ. THz Gun parameters

2) Measured values, fit well with ASTRA simulation for 200pC and typ. THz Gun parameters

J. Michael Klopf • klopf@hzdr.de • www.hzdr.de • HZDR

FELBE / TELBE Undulator Parameters

	FEL 1 (U37)	FEL 2 (U100)	TELBE (U300)
Undulator Period	37 mm	100 mm	300 mm
Number of Periods	54	38	8
Undulator Parameter	0.4 – 1.35	0.5 – 2.8	0.5 – 7.7
Undulator Type	hybrid NdFeB (planar)	hybrid SmCo (planar)	Electromagnetic (planar)
Resonator Length	11.53 m	11.53 m	N/A
Outcoupling Hole	1.5 / 2.0 / 3.0 / 4.0 mm	2.0 / 4.5 / 7.0 mm	N/A
Waveguide	no	partial	no
gap (undulator chamber)	13 mm	10 mm	100 mm dia.

FELBE / TELBE Source Parameters

	FEL 1 (U37)	FEL 2 (U100)	TELBE (U300)
Spectrum	5 – 40 μm 7.5 - 60 THz	18 – 250 μm 1.2 – 16.7 THz	120 – 3000 μm 0.1 – 2.5 THz
Avg. Power	Avg. Power ≤ 44 W (13 μm)		≤ 1 W (1 THz)
Pulsewidth (min.)	0.7 – 4 ps	1 – 25 ps	~ 1 – 22 ps
Peak Power (P _{avg} / λ / τ _p)	\leq 1.5 MW 34W / 14.3 μm / 0.7 ps	\leq 1.2 MW (estimated) 60W / 42 μ m / 4.0ps	1 MW (estimated) 1W / 1 THz / 10ps
Pulse Energy (max.)	\leq 3.4 μ J	$\leq 5 \ \mu J$	\leq 10 μ J
Peak Field ($E_p / \lambda / d / \tau_p$)	≤ 3 MV/cm (<i>estimated</i>) (2.3μJ / 15μm / 150μm / 1.0ps)	≤ 600 kV/cm (1.2μJ / 30μm / 300μm / 3.5ps)	300 kV/cm (estimated)
Bandwidth $\Delta\lambda/\lambda$	0.4 – 2 %	0.4 – 3.4 %	~ 20 %
Linear Polarization	> 98%	> 98%	~ 98%

Applications for Tunable High-Field Coherent THz

Ultrafast Dynamics

- low-dimensional materials
- correlated systems
- quantum structures
- quasi particles (excitons, magnons, etc.)
- High Fields / Phase Transitions
 - nonlinear response / harmonic generation
 - phonon/lattice driven transient phases
 - low temperature environment
 - high magnetic field
- Nanoscale Imaging (s-SNOM)
 - high spectral brightness ⇒ high S/N for resonant features
 - time-resolved dynamics with nanoscale spatial resolution

T. Venanzi, et al., ACS Photonics 8, 2931-2939 (2021).

Applications for Tunable High-Field Coherent THz

а

- Ultrafast Dynamics
 - Iow-dimensional materials
 - correlated systems
 - quantum structures
 - quasi particles (excitons, magnons, etc.)
- High Fields / Phase Transitions
 - nonlinear response / harmonic generation
 - phonon/lattice driven transient phases
 - low temperature environment
 - high magnetic field
- Nanoscale Imaging (s-SNOM)
 - high spectral brightness \Rightarrow high S/N for resonant features
 - time-resolved dynamics with nanoscale spatial resolution

H. A. Hafez, et al., Nature 561, 507-511 (2018).

Applications for Tunable High-Field Coherent THz

bending

magnets

- Ultrafast Dynamics
 - low-dimensional materials
 - correlated systems
 - quantum structures
 - quasi particles (excitons, magnons, etc.)
- High Fields / Phase Transitions
 - nonlinear response / harmonic generation
 - phonon/lattice driven transient phases
 - low temperature environment
 - high magnetic field
- Nanoscale Imaging (s-SNOM)
 - high spectral brightness ⇒ high S/N for resonant features
 - time-resolved dynamics with nanoscale spatial resolution

T. V. A. G. de Oliveira, et al., Adv. Mater. **33**, 2005777 (2021).

FEL (oscillator) vs. Superradiant Undulator

FEL (oscillator)	Superradiant Undulator
high stability oscillator averages upstream noise sources	accelerator noise imprinted on beam e.g. timing jitter, energy, bunch charge, etc.
not CEP stable * possibility for modulated CEP stability or seeding * phase-resolved detection recently demonstrated	CEP stable * relatively straightforward phase-resolved detection
high pulse energy * outcouple only small % of intracavity pulse energy	extremely high pulse energy pulse energy depends mainly on (bunch charge) ²
fixed rep. rate average power can be too high as pulse energy increases * cavity dumping / pulse picking provide possible fix	variable rep. rate average power decoupled from pulse energy
adjustable pulsewidth / bandwidth * over limited range (e.g. 0.5 – 3% BW)	fixed pulsewidth / bandwidth * unless # undulator periods can be varied
very large spectral range possible continuously tunable by the user	spectral range limited by bunch compression * modulated bunches needed for higher frequencies
outcoupled mode and divergence well defined for optical transport	longitudinally extended source and complex spectral/spatial mode distribution presents challenges for optical transport

DRESDEN concept DIsconcept Mitglied der Helmholtz-Gemeinschaft J. Michael Klopf • klopf@hzdr.de • www.hzdr.de • HZDR

J. Michael Klopf • klopf@hzdr.de • www.hzdr.de • HZDR