Simulations of seeded THz FEL at PITZ

Georgi Georgiev Zeuthen, 15 Mar 2023

DESY.

HELMHOLTZ

Introduction

- Ideal THz source for pump-probe experiments
 - High power
 - High repetition-rate
 SASE FEL
 - Tunable
 - CEP stable \Box Seeded FEL
- CEP stability → stable pulse + stable phase
 - Difficult to achieve

Introduction

- Ideal THz source for pump-probe experiments
 - High power
 - High repetition-rate
 SASE FEL
 - Tunable
 - CEP stable \Box Seeded FEL
- CEP stability → stable pulse + stable phase
 - Difficult to achieve
- Improved shot-to-shot stability
 - Energy variation
 - Arrival time jitter
 - Spectrum

Seeding by pre-bunched beam

Introduction

- Single LCLS-I undulator
- Considered seeding methods at PITZ
 - Seeding laser
 - Pre-bunched beam (with experiments)
 - Short spike in beam current
- Modulated photocathode laser pulse
 - Temporal modulation at sub-THz frequency
 - Beam evolution with space-charge forces
 - More from beam dynamics simulations

$$b = \frac{1}{N_e} \left| \sum_{k=1}^{N_e} \mathrm{e}^{-i\,\omega t_k} \right|$$

Seeding by pre-bunched beam

Seeding effect

- Gray lines \rightarrow 100 shots
- Black line \rightarrow average
- Seeding effect
 - Stable envelope
 - Stable spectrum
 - Early exponential growth and saturation

Seeding by pre-bunched beam

Overview

Other seeding methods

Seeding laser and short spike

- External coherent pulse copropagating
- Single super-radiant spike on top
- Seeding effect
 - Similar trends as with pre-bunched beam
 - Gain curve, arrival jitter, spectrum

Summary of seeded FEL simulations

- Significantly better shot-to-shot stability over SASE regime
- No seeding below b=10⁻⁵
- Efficient seeding above b=10⁻³

Beam dynamics and experiment

Beam dynamics simulations

Non-linear space-charge effects

- Modulated long Gaussian
 - Modulation visibility 80%
 - Main goal \rightarrow high bunching factor
- Non-linear space-charge oscillations
 - Higher-harmonics appear
 - Development of short spikes

Beam dynamics simulations

Fourier analysis

- Modulated long Gaussian
 - Modulation visibility 80%
 - Main goal → high bunching factor
- Non-linear space-charge oscillations
 - Higher-harmonics appear
 - Development of short spikes
- Strong focusing near the photocathode
 - Prominent short spikes
 - Bunching at high frequencies
 - Difficulties in matching to undulator (limit)

Experiment

Beam preparation

- Modulated photocathode laser at 0.5 THz
- Prepared beam for non-linear SC effects
- Limited improvement of bunching

Experiment

With band-pass filter

- Modulated photocathode laser at 0.5 THz
- Prepared beam for non-linear SC effects
- Limited improvement of bunching
- Experiment with an undulator
 - Earlier exponential growth
 - Improved pulse energy and fluctuation
- Low bunching

Summary

- Seeding improves shot-to-shot stability in simulation
- Bunching factor of 10⁻³ and above for pre-bunched
- Seeding effect confirmed experimentally
 - Low bunching \rightarrow low effect
- Few seeding methods available

Thank you