

DALI – Key Aspects of the MIR–THz Source

P. Evtushenko for ELBE/DALI team

Outline

- ※ ELBE → DALI :: requirements
- X Overall concept of new sources :: expected performance
- Bunch compression
- X Longitudinal emittance growth due to LSC
- ※ 2-Beam Optical-Klystron → modulator → seed generator

ELBE :: IR and THz Sources

IR-THz User's Requirements

X New Facility Target Parameters

- 1. pulse energy: 100 μJ ... 1 mJ (as high as possible) E-field of few MV/cm
- 2. frequency range:0.1 THz ... 30 THz
- 3. repetition rate: **CW**! 100 kHz ... 1 MHz (high flexibility)
- 4. Bandwidth: $\sim 1\%$ (multi-cycle) and $\sim 100\%$ (single-cycle)
- 5. Synchronization: ~ 10 fs level
- 6. Carrier Envelope Phase (CEP) stability

How to increase pulse energy by 10² ... 10³ ?

- 1. Increase bunch charge to $\sim 1 \text{ nC}$
- 2. Use optimized (2nd order) bunch compression
- 3. Use longitudinally modulated beams: HGHG @ h=1, (almost Optical Klystron)

Conceptual Source Architecture (SRU)

Set of sources:

- 1. SRU driven by short (200 fs) pulses
- 2. SRU driven by modulated beam
- FEL oscillator seeding sources for
 (2) and standalone source

2 superradiant undulators

4. Single-cycle source for each SRU CER / CDR (like TELBE)

4

Bunch Compression

- Single particle dynamics: *
 - a) slice energy spread ΔE_{slice} ultimately limits bunch compression
 - b) connects ΔE_{slice} , f₀ (LINAC), E_{initial}, E_{final}, ϕ_{acc} to $\sigma_{t final}$
 - c) shows required bunch compressor parameters R₅₆, T₅₆₆
- ΔE_{slice} determined by (a) injector, and (b) by collective effects longitudinal space charge (LSC) *
- ۲ Longitudinal phase space linearization – large impact on compression (to 2nd order)
- One way to linearize phase space is to use 3rd harmonic (RF) cavity ۲
- Alternative: 2nd-order magnetic compressor (less costly, advantageous for high average I_b) ۲

Longitudinal emittance growth (LSC)

• Growth of ΔE_{slice} due to LSC; per 1D, linear µBI theory for 1 nC, $\sigma_{x(y)}$ =1 mm, D=50 m

Mitglied der Helmholtz-Gemeinschaft

HZDR

Mitglied der Helmholtz-Gemeinschaf

Optical Energy Modulation

DRESDEN

OEM :: Required E-field

✤ LSC (µBI) predicts ~ 40-50 keV SES

9

- Assume SES = 100 keV (due to other collective effects)
- ★ Modulator 1.17m (130 mm x9) K=1 required following E-field for $\delta \gamma_m = 3 \cdot \delta \sigma_E$

Mitglied der Helmholtz-Gemeinschaf

FEL oscillator : Intra-cavity mode E-field

- Dattoli Benson semi-analytical FEL model (well benchmarked by JLab FELs)
- Assuming: $Q_b = 80 \text{ pC}$, $\sigma_t = 1 \text{ ps}$, $\varepsilon_z = 50 \text{ keV} \cdot \text{ps}$, $R_z = 1 \text{ m}$, $\delta_{opt} = 4 \times 1.2 \%$
- Optical model has effective area $[\pi \cdot (3 \cdot r_b)^2]$ with $r_b = 0.5$ mm

11

