



FELs of Europe Topical Workshop on Selected Problems in FEL Physics: from soft X-rays to THz CSSB, DESY - Hamburg November 17<sup>th</sup>, 2023

### A Versatile THz Source from High-Brightness Electron Beams

Generation, Characterization and Applications at SPARC\_LAB

Enrica Chiadroni (Sapienza Univ., SBAI Dept. and INFN - LNF)



SAPIENZA

DIPARTIMENTO DI SCIENZE DI BASE E Applicate per l'Ingegneria

#### Outline

- Motivation for a THz radiation source
- Overview of the generation mechanism
- The THz radiation source at SPARC\_LAB
  - Broad band from ultra-short high brightness electron bunches
  - Quasi-narrow band from longitudinally modulated bunches
  - Narrow band from SASE FEL process
    - The SABINA Project
- Conclusion

### Motivation





- **'THz Gap':** Challenges associated with the generation, manipulation and detection of THz radiation
- THz Sources:
  - Quantum Cascade Lasers (work mainly in CW, strict operational temperatures, small frequency tunability...)
  - Laser-based sources (pulsed radiation, frequency range limited by the non-linear crystals, high energy pulses...)
  - Particle Accelerator-based sources → High peak power and/or average power, …

#### **Electron Beam-based THz Source**

- New generation of sources that boost the peak power in the THz region up to > 10<sup>2</sup> MW
- Short, sub-ps down to few tens of fs, electron bunches produce Coherent Radiation in the THz range
   Coherent emission
- The key for high efficiency in a beam-based radiation source is to exploit the coherence enhancement effect by beam profile tailoring

 $\propto N^2$ 



# The SPARC\_LAB Test Facility

M. Ferrario et al., SPARC\_LAB present and future, NIM B 309, 183–188 (2013)



https://www.google.it/maps/@41.8231995, 12.6743967, 3a, 69.7y, 130.68h, 76.68t/data = !3m6!1e1!3m4!1sYyB35yaBMxJgQ92-wp3oYQ!2e0!7i13312!8i6656?hl = enter the second state of the second

### **Linac-based THz Radiation Source**

Velocity Bunching Technique for Longitudinal Compression



L. Serafini and M. Ferrario, Velocity Bunching in Photo-injectors, Physics of, and Science with the X-Ray Free-Electron Laser, edited.by S. Chattopadhyay et al. © 2001 American Institute of Physics

**M. Ferrario et al.**, Experimental Demonstration of Emittance Compensation with Velocity Bunching, Phys. Rev. Lett. **104**, 054801 (2010)

#### **THz Radiation as Longitudinal Beam Diagnostic** Electron beam parameters electron gun accelerating Energy (MeV) 120 sections Charge (pC) 300 THz **CTR and CDR** TR source RMS bunch 1.4 sources magnet length (ps) RF deflector FEL undulators Normalized Interferogram 0.6 1.0 to beam 100 dum 0.4 ₹ THz Current Form Factor 60 CTR source 0.2 40 0.5 20 0 ( Ó 2 2 **CTR** source -0.2 Time (ps) D 0 0.0 0.2 8 0.4 0.6 0.8 1.0 -8 Time shift (ps) Frequency (THz) dI $\Rightarrow |F(\omega)|$ (a) Autocorrelation function measured by a Martin-Puplett interferometer $\Rightarrow F(\omega) \Rightarrow S(z)$ $\overline{d\omega}$ <sup>|</sup> measure c (b) Bunch form factor Phase reconstruction **Inverse** Fourier (c) Retrieved longitudinal bunch profile: 1.4 (0.1) ps rms Beam line transmission, Kramers-Kronig transform instrument response technique

#### **Broad-band High Peak Power Source**

#### Velocity Bunching for Longitudinal Compression



\*Low frequency cut-off due to the extension of the source

\*\*High frequency cut-off due to bunch length

#### **Linac-based THz Radiation Source**

Laser Comb Technique for Longitudinally Modulated Beams



#### **Quasi-Narrow Band Tunable Source**

#### **Electron Beam Parameters**

#### Total Charge = 240 pC



## **Quasi-Narrow Band Tunable Source**

#### **CTR Parameters**



#### **Tunable THz Source**



#### **Figures of Merit** CTR-based THz Source

|                               | <b>THz Radiation Parameters</b> |                |                         | <b>Electron Beam Parameters</b> |                |
|-------------------------------|---------------------------------|----------------|-------------------------|---------------------------------|----------------|
|                               | Single Bunch                    | Ramped<br>Comb |                         | Single Bunch                    | Ramped<br>Comb |
| Energy per pulse (µJ)         | 35 <sup>+</sup>                 | $\sim 1$       | Charge (pC)             | 500                             | 220            |
| Peak power (MW)               | ${\sim}80$ $^{+}$               | $\sim 3$       | Energy (MeV)            | 121                             | 110            |
| Electric field (MV/cm)        | >1 <sup>+</sup>                 | -              | RMS Bunch duration (fs) | 180                             | ++             |
| Bandwidth * (THz) $\Delta v$  | $\sim 2$                        | 0.25           | Rep. Rate (Hz)          | 10                              | 10             |
| RMS Pulse duration $t_p$ (ps) | $\sim 0.18$                     | ~1.23 **       | Comb distance (ps)      | -                               | 1.3            |

<sup>+</sup> Systematic uncertainty due to missing detector calibration below 0.61 THz; <sup>++</sup> the RMS duration,  $\sigma_t$ , for each bunch in the train is reported in the table caption; \* Defined as the FWHM; \*\* From measured results the time-bandwidth product is  $\Delta v t_p = 0.72$ .

#### First user's experiment at SPARC\_LAB

#### Metal-to-insulator transition in topological insulators

Study of the non-linear electrodynamics properties on **topological insulators**: **strong reduction of the absorption of Bi<sub>2</sub>Se<sub>3</sub>** has been **observed for the first time increasing the THz electric field from few kV/cm up to 1.6 MV/cm** onto the sample



F. Giorgianni, E. Chiadroni et al., Nature Communications 7:11421 (2016)

#### SABINA

#### Source of Advanced Beam Imaging for Novel Applications

- **GOAL:** Enhancement of the SPARC\_LAB research facility increase of the uptime and improvement of the accelerator performances:
  - Technological plant renewal
  - Substitution of the ancillary systems and upgrade of the facility in terms of technology
  - Creation of two user facilities:
  - High power laser for solid target
    experiments
  - THz/IR FEL: radiation source for optical spectroscopy (pump probe), also at cryogenic T
- **STATUS:** kick off <u>Sept. 2019</u>, present deadline: <u>end of 2023</u>



## The SABINA THz/IR SASE FEL

- SABINA aims to develop a THz/IR SASE FEL user facility delivering
  - monochromatic light with ~ps/sub-ps time duration
  - Tunable frequency between 3-30 THz
  - High energy per pulse, up to 100 µJ/pulse
  - Tunable polarization





Courtesy of L. Mosesso and S. Lupi

## The SABINA THz/IR SASE FEL

- SABINA aims to develop a THz/IR SASE FEL user facility delivering
  - monochromatic light with ~ps/sub-ps time duration
  - Tunable frequency between 3-30 THz
  - High energy per pulse, up to 100 µJ/pulse
  - Tunable polarization





Courtesy of L. Mosesso and S. Lupi

## **Apple X Undulator**

- Polarization and energy can be tuned with longitudinal shifts of the magnetic array pairs.
- The intensity of B along the undulator axis can be tuned by changing the gap



| 55  mm  |  |  |
|---------|--|--|
| 1.35 m  |  |  |
| 24      |  |  |
| 22      |  |  |
| 1.22 mm |  |  |
| 1.22 mm |  |  |
| 60 mm   |  |  |
| 200 mm  |  |  |
| NdFeB   |  |  |
|         |  |  |





Transverse-gradient Large-bandwidth undulator pulse





Advanced operational modes by means of asymmetric configurations

Courtesy of A. Petralia and L. Giannessi

## Apple X Undulator from Kyma

First module arrived at LNF, now ready for magnetic measurements





Courtesy of L. Giannessi



Courtesy of A. Giribono and C. Vaccarezza



#### Conclusions

- The SPARC\_LAB Test Facility is a test bed for advanced high brightness beam research and applications, e.g. novel acceleration techniques, advanced radiation sources, innovative diagnostic tools
- The most valuable results obtained at SPARC\_LAB with both ultra-short single bunch and multi-bunches electron comb beams provide high energy per pulse and broad and narrow spectral bandwidth THz radiation, respectively for non-linear and pump-probe experiments in solid-state physics and material science
- Next step would be the operation of the SABINA THz/IR SASE FEL experiment hopefully end of next year for user experiments

## Acknowledgement

- SPARC\_LAB Collaboration
- LNF Accelerator Division

#### Thank You for the kind attention