State-of-the-art RF Oscillators and Distribution.

FELs EUROPE, WS "Perspectives and Future Challenges in Optical and RF Synchronization Systems"

Dr. Frank Ludwig on behalf of the MSK, LbSynch team at DESY, WUT (Warsaw University) Hamburg, Germany, 14.11.2023

HELMHOLTZ RESEARCH FOR

RF-Synchronization – Overview Phase Distribution

Typical XFEL, RF-synchronization system, Frequency: ~GHz, Length ~km:

Short range 1 us…1ms: PS, EMI, Electronics, Material Prop, … **Mid range 1ms…10s:** Acoustic, Fans, Seismic, Air/Water flow, … **Long range 10s … days:** Temperature, Humidity, Air Pressure,…

- Sources of timing jitter short-term, long-term: Properties of a passive RF-cable distribution:
	- (+) Minor short-term jitter contribution
	- (+) Relatively low cost for small facilities
	- (--) Drift ~20fs/m/K **(T, RH, air pressure)** in the >10ps range
	- (--) Power loss **~3dB/100m** -> lower freq, ULN ampl. (>10dBm)

RF-Synchronization – Overview Phase Distribution

e.g. RF-synchronization in combination with an optical synchronization:

"State-of-the-art RF-Oscillators and Synchronization Systems | FELs EUROPE, Hamburg, Germany | Dr. Frank Ludwig, 14.11.2023 **Page 3**

RF-Oscillators

RF-Oscillators – Concepts for optimal Phase Noise

Combination of different oscillators : ■ Phase-Lock-Loop (PLL) Synthesizer :

RF-Oscillators – State-of-the-art (commercial) Examples

◼ SwissFEL - (SMA100A, commercial) : ◼ SRs (SMA100B, Korea-4GSR, DESY-Petra III, ARES …)

RF-Oscillators – State-of-the-art (very high performance)

◼ LCLS-II (1300MHz via 8x162.5 GMXO) : ◼ PAL-XFEL (DRO-based):

VCODD Easter

Phase Noise

-160 dBc/Hz at 100KHz offset

-170 dBc/Hz at 1 MHz offset

Signal Frequency 2.8560000 GHz RBW

MultiView

40 dBc/H

 -60 dBc/H

-80 dBc/Hz

 -100 dBc/Hz

 -120 dBc/H;

 -140 dBc/H

180 dBc/H

300.0 mHz

2 Integrated Measurer

Start Offset

1.000 Hz

10.000 Hz

100.000 Hz

1.000 kHz

Range Trace

2.856 GHz phase noise

likHz

Frecuency Offset

Int Noise

-65.79 dBc

-75.03 dBc

-93.86 dBc
-97.26 dBc

10 kHz

MO Integral jitter: 10Hz-10MHz is 12.3fs. 100Hz-10kHz is 3.5fs [spec is 10fs] MO Integral jitter: 10Hz-10MHz is 13.96fs. 100Hz-1MHz is 1.48fs "RF reference distribution and operation experiences in PAL-XFEL",

Stop Offset

10.000 MHz

10.000 MHz

10.000 MHz

10.000 MHz

Chang-Ki Min, Pohang Accelerator Laboratory,Korea LLRF2023

PM

0.04 °/725.95 µrad
0.01 °/250.57 µrad

0.00 °/28.69 µrad
0.00 °/19.39 µrad

100ikHz

FIL

Meas: Phase Nois

.1Clrw PN Smth 1% Spur 6dB

Spot Noise [T1]

00.000 Hz -114.54 dBc/l

 1.000 kHz

00.000 kHz

0.000 MHz

FM

45.543 Hz

45.543 Hz

45.543 Hz

45.543 Hz

1.000 Hz -62.57 dBc/H

 -160 d B c/H

10.0 MHz

Jitter

40.455 fs

13.964 fs

1.599 fs

1.080 fs

20:41:48

 $D = \frac{07.05.201}{20.41 \cdot 4}$

RF-Oscillators – FLASH Evolution <100fs, <20fs, <2fs

Free-Electron Laser in Hamburg

 $10⁷$

FLASH Main-Oscillator (MO):

"State-of-the-art RF-Oscillators and Synchronization Systems | FELs EUROPE, Hamburg, Germany | Dr. Frank Ludwig, 14.11.2023 **Page 8**

of H. Pryschelski, K. Czuba

MO: Sub – 1fs Reference for FLASH

FLASH

Free-Electron Laser in Hamburg

< 12 fs [10 Hz to 100 Hz]

■ FLASH new Main Oscillator :

1.3GHz, +46dBm, Health monitoring

< 1.8 fs [100 Hz to 1 kHz] **Phase Noise** $\sqrt{2}$ MultiView \mathbb{Z} Spectrum **Signal Frequency** 1.3 GHz RBW < 0.8 fs [1 kHz to 1 MHz] Signal Level 14.52 dBm XCORR Factor 50 0 dB Meas Time \sim 246 s Att 1 Noise Spectrum 100 Hz i1 kHz 10 kHz 100 _{kHz} -90 dBc/ myny
- 100 deretria Spot Noise [T1] 100.000 Hz -118.01 dBc/ 45.41-dBc (A 10.000 kHz -162.86 dBd/ -120 dBc/H -169.65 dBc/ 1,000 MHz -130 dBc/Hz -140 dBc/Hz 140 dP -150 dBc/H: -150 dBo -160 dBc/Hz 160 dB -170 dBc/Hz -180 dBc/H 180 dB 10.0 Hz **Frequency Offset** 10.0 MHz 2 Integrated Measurements Start Offset Stop Offset Weighting PM FM / AM Range | Trace | Int Noise Jitter 10.000 Hz 100.000 Hz -83.69 dBc 5.30 m^o/92.44 µrad $2 mHz$ 11.318 fs 100,000 Hz 1.000 kHz 845.58 µº/14.76 µrad 1.807 fs -99.63 dBc 3 mHz 1.000 kHz 10.000 kHz -115.67 dBc 133.44 µ^o/2.33 µrad 7 mHz 285.126 as 10.000 kHz 100.000 kHz -116.30 dBc 124.00 µ°/2.16 µrad 120 mHz 264.954 as 100.000 kHz 1.000 MHz -109.37 dBc 275.49 µ°/4.81 µrad 2.783 Hz 588.656 as 1.000 MHz 10.000 MHz -100.87 dBc 733.48 u°/12.80 urad 76.486 Hz 1.567 fs 10.000 Hz 10,000 MHz -83.49 dBc 5.42 m^o/94.66 urad 76.537 Hz 11.589 fs **DR W** 20.09.2023 Ready

■ Absolute Phase-noise : Integrated Jitter:

KVG Quartz Crystal Technology GmbH info@kvg-gmbh.de

Quartz Crystal Technology GmbH

Under license from DESY 15:09:06 20.09.2023

- **Improvement of int. jitter from 38 fs to 1.8 fs [100Hz, 1MHz]**

- fs-laser systems locked to the reference show significant improvement

MO-MLO Lock: Residual Noise

■ MO-MLO in-loop residual phase noise (tight lock, BW limited by fiber-stretcher) : Courtesy

of T.Lamb

Towards as-Precision – MO Application LLRF

\blacksquare SRF-Cavity (1.3GHz, Q_L 3.10⁶

LLRF Component Requirements :

Master reference (MO) : <-170dBc/Hz Actuator chain (ACT) : <-140dBc/Hz Field detectors (DWC) : <-175dBc/Hz (-150dBc/Hz)

RF-Distribution

RF-Distribution – Passive – optical re-synchronized

e.g. RF-synchronization in combination with an optical synchronization:

RF-Distribution – Passive, temp. and gas stablized

- **ESS RF Phase synchronization system:**
	- Single 1/5" coax rigid line for 352MHz and 704 MHz
	- 58 RF-TapPoints, 294 outputs, + 17dBm
	- Temperature controlled line with **0.015 deg p-p**
	- Temperature controlled coupler TapPoints with **0.1 deg**
	- Nitrogen gas to remove humidity, pressure stabilized **1mbar**
- Single 1/5" coax riged line :
- TapPoint coupler / Cable heater :

◼ Out-of-loop verification **0.12 deg** pp in spec :

Gas pressure influence on phase : 0.11 deg / mbar for 600m achieved +/-1mbar pressure stability quite sensitive

EUROPEAN SPALLATION SOURCE

RF-Distribution – Passive – temperature stabilized

- PAL-XFEL (Pohang) RF-synchronization system (2.856GHz RF), ~1.5 km):
- Single cellflex line for 476MHz, +30dBm (Drift transport)
- Local re-synchronization via PLLs and DROs to S-Band (Jitter transport)
- Temperature controlled line with water pipes to **0.01 deg / day**

FIL

"RF reference distribution and operation experiences in PAL-XFEL", Chang-Ki Min, Pohang Accelerator Laboratory,Korea LLRF2023

RF-Distribution – Passive – temperature stabilized

FIL

"State-of-the-art RF-Oscillators and Synchronization Systems | FELs EUROPE, Hamburg, Germany | Dr. Frank Ludwig, 14.11.2023 **Page 16**

RF-Distribution – Interferometer Basics

- Conditions:
	- Constant phase shift of the short fixed by the feedback loop
	- Equal signals at the combiner inputs attenuation and phase adjustments
	- Properly set distance between short and TapPoint (L1, L2, L3) Idea of phase averaging reference line by J. Frisch, D. Brown,

and E. Cisneros (paper titled, "*Performance of the Prototype NLC RF Distribution System*"), continued by Brian Chase and Ed Cullerton ("Reference Line Presentation", LLRF 2011)

RF-Distribution – Interferometer Basics

RF-Distribution – Interferometer – Laboratory Results

Simplified RF-interferometer link:

"Phase Drift Compensating RF Link for Femtosecond Synchronization of E-XFEL", D. Sikora, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 9, SEPTEMBER 2020

Laboratory prototype results:

- Suppression of typ.10ps to **<50fspp** (SF=200) - Setup and out-of-loop detectors not stabilized (neither in T, RH), only 1 chamber @ this time.

RF-Distribution – Interferometer – Challenges for sub-10fs

Suppression factors (SF) >1000, simulation vs. measurement :

RF-Distribution – Interferometer – S11 Cellflex cable Limits

Fig.10: Case c, $1/2$ " cable extended to 43.2 m. $S11@1.3GHz = -20$ and IL@1.3GHz= -2.69 dB.

RF-Distribution – Interferometer – first Tests, SLAC - LCLS-II

LCLS-II structure:

Phase reference lines (PRL) :

to LLRF, 1300 MHz (REF), 1-5/8" Rigid Line, 650m

1320 MHz (LO) L0-L1: 6 Couplers, 24 Cav. L2 : 6 Couplers, 96 Cav. L3 : 10 Couplers, 144 Cav. to XTES, 1300MHz (REF) to LCLS, 476MHz (REF) to Timing, 1300MHz/7 (REF)

RF-Distribution – Interferometer – first Tests, LCLS-II

Using self-exited loop (SEL) and detuning equation:

Reference to cavity phase

- $\mathbf{\Omega}$ - Median span drift phase difference is **0.14 deg**.
	- It includes PRL + forward and cavity cables to the tunnel within the day-night temperature cycle.
	- A residual out of loop test might be helpful.

t (hours)

RF-Distribution – in comparison CW optical Links

(Standard SMF)

Courtesy of S.Jablonski FIL

Drift ~40fs/m/K, 2.5 fs/m/%RH Transmitter Receiver Optical splitter **SMF FRM** Circulator CW laser source **EDFA** MZN hotodetecto otodetect Local oscillator Reference oscillator **PD** Phase detector 2 Phase detector 1 LLRF φ_1 72 ps Drift reduction: $\varphi_{drift} = \frac{\varphi_1}{2} + \varphi_2$ Drift reduction: $\frac{12 \mu s}{53 \, fs} = 1358$ $2 + \varphi_2$

■ Phase drift correction by the reflectometry technique :

Long-term synchronization inaccuracy:

Summary and Outlook RF-Oscillators …

- State-of-the-art RF-oscillators have integrated jitters for frequencies >1kHz below 1fs.
- For a minimal beam arrival time jitter, the 1/f-noise of the MO should be further reduced. For optical systems the MLO should be improved to avoid un-correlated noise from group delay.
- To avoid spontaneous phase jumps after years from Quarz oscillators, modern MOs should offer the possibility to exchange oscillators "on the fly".
- Below 1fs, passive and active vibration cancelation methods must be applied. Silent racks, fans or water cooling will have an impact on the installation of facilities.

Summary and Outlook RF-Distribution …

- Passive stabilized RF-distribution systems showed a long-term stability in the ps_pp range.
- The short-term stability is relatively easy to achieve and distribute below 10 fs_rms. Often small facilities starts with low cost RF-distribution systems and extend to optical systems.

Summary and Outlook RF-Distribution …

- An optically re-synchronized RF-Distribution combines benefits of robustness and performance.
- State-of-the-art (femtosecond) phase reference lines use active drift stabilization techniques either for RF cables or optical fibers. Optical CW links show results in the 50fs_pp regime. RF based interferometer are either not verified or show similar results in laboratory.
- For sub-10 fs long-term stability, actively compensated RF cables requires suppression factors much higher than 1000 or link lengths in the order of less than 100m.
- Many facilities require an out-of-loop link measurement to verify their link performance precisely.
- RF-cables needs to be characterized in T, RH systematically.
- BB-Feedbacks are needed to remove many tiny residual drifts, e.g. from cavity pickup cables ...

Thanks for your attention!

Different synchronization approaches

Courtesy of H.Schlarb FIL

■ Various approaches:

