Synchronization Requirements for Future Experiments

Getting the best time resolution to measure ultrafast processes

Stefan Düsterer on behalf of FS-FLASH, FS/LA and MSK

Perspectives and Future Challenges in Optical and RF Synchronization Systems Hamburg, Nov 14, 2023

Outline

Synchronization requirements at FELs

- What to look at: Time scales and examples
- How to look: methods
- Present status at FLASH
- Thoughts about limits and experimental schemes to overcome them
- Try to answer questions ...

Time scales ...

It never can be too short ;)

F. Krausz, M. Ivanov, REVIEWS OF MODERN PHYSICS, VOLUME 81, 2009

DESY. | Synchronization Requirements for Future Experiments | Stefan Düsterer | Nov 14, 2023

Time scales ... overview

DESY. | Synchronization Requirements for Future Experiments | Stefan Düsterer | Nov 14, 2023

• Chem. Rev. 2017, 117, 16, 11025–11065

Examples from FLASH

Charge movement inside excited molecules

Nature Communications 13, 198 (2022);

Examples from FLASH

Isomerization and electron coherence

Isomerization from Acetylene to Vinylidene (https://doi.org/10.1103/PhysRevLett.105.263002)

electronic coherence in photoionized biomolecules

Schwickert et al., Sci. Adv. 8, eabn6848 (2022)

Time resolved experiments ... pump-probe

How to measure fast processes ...

Pump: initiating the reaction **Probe:** looks what happened

- FEL + FEL
- FEL + optical laser
- FEL + THz
- .

https://www.sciencephoto.com/media/618549/view/bullet-hitting-an-apple

$$t_{res} \sim \sqrt{t_1^2 + t_2^2 + \sigma_{jitter}^2}$$

Few fs dynamics observed at FLASH

FEL + FEL pulse

Split and delay units: down to few as resolution

Schwickert et al., Sci. Adv. 8, eabn6848 (2022)

$$t_{res} \sim \sqrt{t_1^2 + t_2^2 + \sigma_{jitter}^2}$$

Pump probe with 2 independent sources

FEL - Optical Laser Experiments

$$t_{res} \sim \sqrt{t_{FEL}^2 + t_{Opt-Las}^2 + \sigma_{jitter+drift}^2}$$

- Pulse duration:
 - PP Laser: ~15fs 100 fs ... relatively easy to diagnose
 - FEL: < 10 fs 300 fs ... well .. THz streaking / TDS
- Jitter + Drift
 - Synchronization system
 - Produce synchronized electrons and laser pulses
 - Electron acceleration ... BAM (Beam arrival time monitor)
 - Laser amplification and transport ... LAM (Laser arrival time monitor)
 - FEL process + XUV transport
 - Environmental changes (temp, humidity, air pressure ...)

Temporal resolution at different FELs

Few examples

• XFEL: sub 20 fs very short FEL and optical pulses

(no jitter sorting)

 LCLS: usually ~60fs (with sorting) with very short optical pulses 30 fs:

Appl. Phys. Lett. 113, 114102 (2018)

P FINETTI et al. PHYS. REV. X 7, 021043 (2017)

• Fermi: ~ 100 fs ... very low jitter (5 fs), limited by optical pulse duration

Resolution measurement at FLASH

"Towards Pulse-Length Limited Temporal Resolution"

FEL: 7.7 nm, ~ 20 fs (FWHM) Laser 800 nm , 18 fs (FWHM)

-> pulse duration limit ~ 30 fs

+ Jitter: ~ 30 fs (FWHM) / 12 fs (rms)

-> ~ 50 fs FWHM resolution (~ 20 fs rms)

$$\sigma_{jitter} = \sqrt{(\sigma_{OptRef}^2 + \sigma_{BAM}^2 + \sigma_{SASE}^2 + \sigma_{LAM-jitter}^2)}$$

Submitted – curtesy A. Tul Noor

How to achieve good temporal resolution

Different steps of correction

- ~140 fs with no correction (measurement time 1 h) ... already very good ...
- ~100 fs with FEL arrival time correction (BAM)
 - The arrival time of each electron bunch is corrected (post processing)
- ~ 50 fs with BAM and laser arrival time correction (LAM)
 - The laser drifts / jitter are measured and corrected for (feedback)

Page 13

THz streaking principle

How to measure x-ray pulse duration and arrival times

Laser transport drift correction

LaserArrivaltimeMonitor LAM

Image courtesy of N. Schirmel

DESY. | Synchronization Requirements for Future Experiments | Stefan Düsterer | Nov 14, 2023

LAM Feedback

Significant improvement of the timing stability

Remaining "few meters"

Understanding residual drifts

Distance in fs measured by the SIOS interferomenter

Thoughts about limits

ALL 3 parameters have to be looked at !!!

- Pulse duration:
 - PP Laser: < 10-15 fs is hard for vis / IR
 - FEL (FLASH): shortest pulses few fs
 - possible to beat the coherence time (Photonics **10**, 653 (2023))
 - Needs reliable measurement
- "Timing"
 - Synchronization already in the few fs range
 - Use BAM and LAM ... will be hard to get to sub 10 fs timing stability for longer times
 - To get better: Measure IN or very close to the experiment the actual relative timing
 - Use info to improve "timing"
 - No general solution for all experiments in the XUV $\ensuremath{\textcircled{\odot}}$
 - "self referencing experiments"

 $t_{res} \sim t_{FEL}^2 + t_{Opt-Las}^2 + \sigma_{jitter}^2$

Direct measurement of X-ray and IR arrival times

Improve the resolution even more ...

• Current resolution few fs

- Often used at X-ray FELs
- Problematic at XUV

DESY. | Synchronization Requirements for Future Experiments | Stefan Düsterer | Nov 14, 2023

Vol. 29, No. 23 / 8 Nov 2021 / Optics Express 37429 Page 19

Self referencing experiments – measure SASE pulse shapes

Example from LCLS: Measure and sort ...

Combine experiment and diagnostic

SPEAR chamber in preparation for FLASH

Courtesy M. Ilchen and W. Helml

Self-referenced streaking

Get the relative timing between FEL and an IR pulse by the experiment ...

Clocking Auger electrons

"self-referenced streaking will enable experiments to take advantage of the extreme-intensity X-ray pulses at XFELs while simultaneously exploiting the unrivalled time resolution provided by attosecond streaking spectroscopy."

Seeding – from fs to sub wavelength shifts: play with phases

Phase shift between fundamental and second harmonic

• Changing the phase between fundamental and second harmonic (10 nm ~ 33 as)

DESY. | Synchronization Requirements for Future Experiments | Stefan Düsterer | Nov 14, 2023

Nature Photonics 10(3):176-179

Beam dump

Harmonics and optical laser

attosecond timing tool

Single-shot technique to determine the relative synchronization between an attosecond pulse train and a near-infrared field, with a resolution of one atomic unit (24 as).

Nature Photonics volume 17, pages200-207 (2023)

DESY. | Synchronization Requirements for Future Experiments | Stefan Düsterer | Nov 14, 2023

Fig. 1: Principle of the attosecond timing tool.

Resolution wish list – experiment view

Results from a quick poll ...

• AMO[.]

- 10 50 fs resolution (FWHM) look at femto-chemistry
- Few fs or better for atomic processes …
- Solid state: typically 100 fs
 - 20-50 fs e.g. resolve optical phonons
 - 10-50 fs to look at molecules on surfaces ...

Note: for "optical" pulses: 1 oscillation at 500nm are 1.7 fs 10 fs short pulse has already ~0.1 eV bandwidths

Experiment

Questions for the workshop

And some ideas for answers

- Current limits ...
 - FEL + optical laser : ~ 20-30 fs (FWHM) special cases much better ...
 - FEL + FEL ... well ... few fs to sub fs
- Requirements for future synchronization
 - Jitter and drift in the few fs range ...

feedback is much better than post sorting

- Look at pulse durations AND synchronization
- Robust ...
- New developments needed
 - Accurate measurements of the relative arrival time at the experiment non invasive ...
 - Measure accessible parameters and predict timing -> ML
- Cooperation
 - Closer cooperation between "photon" and "electron" side

Thanks

for your

attention

| THz streaking techniques @FLASH | Stefan Düsterer | 21.11.2022 |