# **HZB Facility Talk**

Thorsten Kamps

Helmholtz-Zentrum Berlin and Humboldt-Universität zu Berlin

HGF MT ARD ST3

ST3 Annual Meeting, GSI, 03. to 05.07.2024









# Today

- Our accelerator facilities at HZB
- Walk you through Bessy II, its upgrade path Bessy II+ and Bessy III,
- Take you to SEALAB: Accelerator R&D for sustainable applications like SRF R&D, water treatment and ultrafast scattering

#### Disclaimer

- Stay tuned for the presentation by Michael Arlandoo on Transverse Resonance Island Buckets (TRIBs) operation mode studies using Lie techniques
- Would like to thank all my colleagues at HZB and elsewhere to help with material for this presentation.



### Two radiation sources – UV and Soft X-Rays for materials discovery

The goal is to develop more sustainable methods and technology to expand the research possibilities and allow for:

#### **Sustainable Science**





We develop, operate, maintain and modernize our accelerators to provide unique research opportunities

#### One center, two campuses and many accelerators



# Our synchrotron radiation source Bessy II



Bessy II, a soft X-ray light source with 36 beamlines (13 undulators, 2 wave length shifters), setup from 1992 to 1998, in user operation since 1999. Constantly evolving.

Complex fill pattern supporting imaging, spectroscopy and timing experiments: low- $\alpha$  mode for ps beams serving CSR and THz, femto slicing for 100 fs beams for pump probe applications





A. Jankowiak, M. Ries, A. Schälicke

### Towards transparent injection at Bessy II

- Transparent injection at highest efficiency challenging for next generation lightsources because of smaller beams and smaller dynamic aperture
- Study on limits of present injection system at Bessy II with non-linear kicker (NLK)





- Step-wise improvement from 4-kicker bump to NLK
- Achieved 97% injection efficiency, identified possible path for Bessy III injectionn design

A. Gora, IPAC 2023-MOPM075

### Sustainable operation of the Bessy II facility

• Establish data collection (85 monitors in control system and archiver), visualization



- Implement savings at Bessy II, to buildup knowhow for Bessy III
  - Improving efficiency of RF transmitters
  - Permanent magnet design and operation
  - Thermal stability -> heating and cooling
  - EU Research Facility 2.0 project



# Developing SEALAB towards a multi-science facility



- [1] TK et al., arXiv:1910.00881v2 [physics.acc-ph] 8 Jan 2020
- [2] J.-G. Hwang et al., J. Korean Phys. Soc. 77, 337–343 (2020).
- [3] TK et al., IPAC 2023

# Status of the SRF photoinjector of SEALAB



### Ultrafast scattering modalities with the SRF photoinjector of SEALAB



#### **Capabilities of the photoinjector:**

1 to 3.5 MeV beam energy with **variable** bunch charge (1 fC to 100 pC), pulse length (10 fs to 6 ps) and spot size (10 to 100s  $\mu$ m), **high stability at MHz repetition rate.** 

Very **flexible accelerator/lens system**: one gun cavity and three booster cavities, many quadrupoles, done optimization for bunching/diffraction/imaging schemes,

#### **Ultrafast science drivers:**

**fs thermometer for the lattice** – study of quantum and functional materials, transistors, solar cells...











see talk by Raffael Niemczyk

### Tackle the main inefficiencies from grid to dump for SRF accelerators





Kick off: https://indico.ijclab.in2p3.fr/event/10302/



#### One center, two campuses and many accelerators



We develop, operate, maintain and modernize our accelerators to provide unique research opportunities





**VSR DEMO** 











#### **Summary**

HZB operates and develops large scale user facilities - synchrotron radiation sources, proton therapy - and accelerator R&D Infrastructures like SEALAB



We advance **fundamental and applied accelerator science and forefront technologies** for the continuous improvement of these facilities and to develop state-of the-art accelerator concepts and novel disruptive methods and paradigms to provide perfect experimental opportunities for HZB's present and future users/partners.

Our strategy is to maintain Bessy II at the forefront by an ambitious R&D program (Bessy II+), which is strongly linked to our new facility Bessy III.

ARD is crucial to our success, especially here in ST3 where we look at ultra-short pulse generation and diagnostics with SRF photoinjectors, innovative schemes for storage ring based FELs (SSMB) and proton therapy modalities  $\rightarrow$  control of the complete 6D phase space for every bunch to enable innovative modalities for FEL, SR and ultrafast applications. Energy-efficiency stability and reliability during all phases of the accelerator lifecycle.

