Gauge-equivariant multigrid neural
networks for lattice QCD

based on Lehner, Wettig 2302.05419, 2304.10438

Christoph Lehner

(University of Regensburg)

May 15, 2023 — HU Berlin / NIC DESY Zeuthen joint lattice seminar

Preconditioning
» In lattice QCD, wall-clock time is often dominated by solution of Dirac equation
Du=5»b
Usually done by an iterative solver (here, GMRES)
» Time to solution is determined by condition number of Dirac matrix

» Condition number increases dramatically in physical quark-mass and
continuum limit

» Can be addressed by Preconditioning
» Find a preconditioner M such that M ~ D~1
» Define v = M~y and use
DMM~tu = (DM)v = b
to solve for v with preconditioned matrix DM (smaller condition number)

» Then u= Mv

1/48

Low and high modes

» Consider the eigendecomposition of D
D= Aaln)(n|
n
Preconditioner should approximate low-mode and high-mode components of

Dfl

> State-of-the-art algorithms (multigrid) are
designed to do this

» We will follow this paradigm, but here we
learn the preconditioner

Source: https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd

2/48

https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd

Gauge-equivariant layers

Parallel transport

>

Consider a field ¢(x) with x € S (space-time lattice, dim = d) and
eV =Ve® Vg)
(gauge space: Vg = CV, non-gauge space: Vg = CV)

Also consider an SU(N) gauge field U, (x) acting on V¢

Define the parallel-transport operator for a path p = p1,. .., ps, with
pi € {£1,...,+d}

Tp = Hpy, - Hpy Hp, with Hud(x) = U (x —)d(x —)

H,, transports information by a single hop in direction [

H,, acts on field; new field H, ¢ is evaluated at x

Example: Ty = H_1H_>H_1HH>

3/ 48

Gauge equivariance

> A gauge transformation by Q(x) € SU(N) acts in the usual way

B(x) = Q(x)9(x)
Un(x) = Q) Up(x)Q" (x +)

» Such gauge transformations commute with T, for any path p

Tod(x) = Q(x) Tpe(x)

» This is an example of gauge equivariance:

An object (here: ¢) and the transformed object (here: Tp¢)
transform in the same way under a gauge transformation.

4/ 48

Parallel-transport convolutions

» Parallel-transport convolution layer and local parallel-transport convolution layer

alx) DT DT WP Togs(x) alx) "2 3D W () Tods(x)
b peP b peP
P> a = output feature index
» b = input feature index
» P = set of paths
> W actsin Vi (here: 4 x 4 spin matrix)
» Elements of W: “layer weights”

» Layers are gauge-equivariant

» No activation function since we want
to learn a linear preconditioner

548

Restriction and prolongation layers
> On the coarse grid 5 we have fields ¢(y) with y € § and ¢ € V,
>V, has no gauge degrees of freedom — no gauge transformations on V,

> Restriction and prolongation layer (with B = block map from S to S)

= RL
P(y) = Zeny) Wy, x)o(x) P(x) e W(y,x)Té(y)

6/ 48

Graphical conventions for features and layers
» A feature is represented by a plane

» A layer sits between planes and is represented by paths plus a dashed arrow

> For restriction/prolongation, a layer is represented by a square frustum

7/ 48

Parallel and identity layers
> Parallel layers act on the same input feature in parallel
» Identity layer: simple copy operation, i.e., output = input

» Example: (All layers except L; are identity layers)

VAN

AN NFAN

8 / 48

Communication avoidance

» On machines with many nodes, sub-volumes are assigned to different MPI
processes

» We also consider models where no information is communicated between
sub-volumes (by setting the links U, (x) connecting sub-volumes to zero)

» We find that the performance of these models is close to those with
communication
— Overall wall-clock time could be lower since no time is spent on
communication

9 /48

Wilson-clover Dirac operator

Dirac operator

» The Wilson Dirac operator can be written in terms of single hops:

1
2
w

B

4
1
DVV:EZ’YH(H*H_H'HL)_ (H-p+Hyp—2)+m

pn=1 1

» For Wilson-clover, consider closed paths with four hops and define

Quu = Hqu—VH+/.LH+U + Hqu-HLH-H/Hfu
+ HyoHopHoyHy o+ HipyHyy Ho W Ho)

Then

4
CSW
Dwc = Dw — 2 > o Fuw
pv=1

with

1 1
Fuv = g(o;w = Qup) Ouv = E(Vu’YV R am)

10 / 48

Numerical details and eigenvalue spectrum

> V=8 x16 8=6.0 (pure gauge), csw = 1, periodic boundary conditions for
all fields

> m = —0.6 is chosen so that Dy is tuned to near criticality (i.e., real part of
smallest eigenvalue &~ 0) — solution of Du = b is challenging problem

<
)
IS
=S

11/ 48

High-mode preconditioners

Model setup and training strategy
» High-mode part of Dirac spectrum is related to short-distance behavior
— Expect one or two layers with small number of hops to show gain in iteration
count
» Consider a linear model M mapping a vector x to Mx

» Supervised learning approach with training step as follows:

» Pick random vector v from Gaussian distribution (mean zero, standard
deviation 1)

» Compute training tuple (Dwcv, v) and optimize cost function
C = |MDwcv — v|?

— Model learns to map Dwcv to v (and hence M = D\X/é)
> Optimizer is Adam Kingma & Ba, arXiv:1412.6980 [cs.LG]

» Derivatives w.r.t. model weights computed using backpropagation

» Training data set is unbounded in size — no need to add a regulator

» Cost function is dominated by high modes

12 /48

https://arxiv.org/pdf/1412.6980

Models chosen for high-mode preconditioner
> One layer, one hop (i.e., 9 paths)

To=1,Ti=H, To=Hy, Tz =Hs, Ta = Ha,
Ts=H_1,Te=H >, Tr=H_3, Tg=H_4

» One layer, two hops: extend the above by 56 two-hop paths

Hi.H, with abe{—4,-3,-2,-1,1,2,3,4} (a# —b)

> “Deep” network of two one-hop layers:

> 1 —1— 1: Two successive layers with one hop each
» 1 — 2 — 1. Two output features in first layer, two input features in
second layer

» PTC (layer weights constant) and LPTC (layer weights depend on x)

» Communication avoidance: U,(x) = 0 between subvolumes of size 43 x 8

13/ 48

Measure of performance

Iteration count without preconditioner

Iteration count gain = - - —
Iteration count with preconditioner

> lteration count refers to outer solver (here, GMRES)

14 / 48

Results for high-mode preconditioner (one layer, one hop)

® LPTC, 1 layer, 1 hop

W PTC, 1 layer, 1 hop

¥ LPTC, 1 layer, 1 hop, comm. avoid.
® PTC, 1 layer, 1 hop, comm. avoid.

-1
7 £
] 3 6
. <
£ g = ¢ ¥
=R 344 =oe ¥ ¥ ¥
£ 1072 o 3 X y
3] 5,
O 1 3 L4
] &
&
1073 T T T T T 0 T T T T T
0 250 500 750 1000 0 250 500 750 1000
Training Step Training Step

»> No gain from LPTC (and they require more training)

» Communication-avoiding version only slightly worse (could be amortized)

15 / 48

Results for high-mode preconditioner (deep network/multiple hops)

® PTC, 2layers (1 -1 — 1), 1 hop
B PTG, 2 layers (1 -+ 2 — 1), 1 hop
PTC, 1 layer, 2 hops

101 10
s ® ®E = H

<

v v v VY
e o o o

64 &

Cost Function
=
o
b
1
Tteration Count Gain

1073 T T T T T 0 T T T T T
0 250 500 750 1000 0 250 500 750 1000
Training Step Training Step

> 1 — 2 — 1 model performs best (and gives ~ twice the gain of 1 layer/1 hop
model)

» Since layers are linear, deep models are not more expressive than shallow models
with same number of hops (but easier to train b/o smaller number of weights)
— 2-hop model should reach similar performance with improved training
procedure

16 / 48

Transfer learning

® PTC, 1 layer, 1 hop, different conf.
B PTC, 1 layer, 1 hop, 3 =5.9
V¥V PTC, 1 layer, 1 hop, m = —0.55

101 10
g
< N
: ©°
.8 - °
i jsennagngy
—2 | Q
L'i 10 O
% g 47
S b=
o g,y Yy VYYVVYVYVY
=
1073 T T T T T 0 T T T T T
0 100 200 300 400 0 100 200 300 400
Training Step Training Step

> No retraining required for (i) different configuration from same ensemble,
(ii) configuration with different 3, (iii) different mass

» Performance varies slightly between configurations
> m = —0.55 is not tuned to criticality — Easier initial problem — Smaller gain

17 / 48

Low-mode preconditioners

Possible approaches

» Low-mode part of Dirac spectrum is related to long-distance behavior
— Need deep network of (L)PTC layers to propagate information over long

distances

» Alternative: use multigrid paradigm

» Define coarse version of the lattice
» Define restriction and prolongation operations (= layers)

» Preserve low-mode part of Dirac spectrum
Liischer arXiv:0706.2298 [hep-lat]

18 / 48

https://arxiv.org/pdf/0706.2298

Model setup

> Reminder: coarse lattice = §, internal vector space = V; with s = dim(V))

» Find s vectors in the near-null space of D

Du; ~ 0 (i=1,...,s)

» Apply GMRES for D with source vector = 0 and random initial guess
(solve to 1078)

» This removes high-mode components and leaves linear combination of
low-modes

» Block the u;

> One site y € § corresponds to a set of sites (or block) B(y) € S
> Blocked vector u) lives on the sites of B(y)

» Orthonormalize the u) within each block — &’
» Then the prolongation map (see slide 6) is defined by
s
W(y,)t =3 at (x)e
i=1
with x € B(y) and & the canonical unit vectors of V;

19 / 48

Training strategy

» Coarse-grid operator is defined as
D = RDwcP

with R and P defined according to restriction and prolongation layers (slide 6)

» Coarse-grid model M contains single LPTC layer with zero- and one-hop paths
and gauge fields replaced with 1 (layer is denoted by cLPTC)

» Same training strategy as before, with cost function
C = |MDv —v]?

(this avoids costly inversion of D—1)

20 / 48

Results for low-mode preconditioner (cLPTC layer)

100 15.0
12.5
10.0

7.5

5.0

Cost Function
Tteration Count Gain

2.5

10-3 T T T T T 0.0
0 2500 5000 7500 10000
Training Step

> lteration count gain refers to inversion of D

cLPTC, 1 layer, 1 hop
cLPTC, 1 layer, 1 hop, diff. conf.

T T T T T
0 2500 5000 7500 10000
Training Step

(we use $ =23 x 4 and s = 12)

» Longer training period compared to high-mode preconditioner

» Transfer learning works with moderate retraining

21 / 48

Multi-grid preconditioners

Model setup

» Combine the high- and low-mode models to learn a model M that approximates
the short- and long-distance features of D~1

> First create a short-distance model that accepts a second input feature (initial guess)

» Model plays role of smoother in multigrid paradigm

> Initial guess from long-distance model acting on coarse grid

22 / 48

Smoother model setup and training strategy

> Find a sequence of uy that approximately solve Du = b (exact solution for
k — o0)

> Assume we have a high-mode model M}, that approximates D!
» Smoother maps the tuple (ug, b) to uki1

U1 = (1 — My D)ug + My b
= u + My (b — Duy) (%)

(“iterative relaxation approach” or “defect correction” with defect b— Du)

» Both D and high-mode model M}, can be represented by (L)PTC layers
— Train a model Ms to map (uk, b) to a uky, (with r € NT)
» Model must have two input features and one output feature

> Every iteration of (x) corresponds to two (L)PTC layers
— Construct Ms using 2r successive layers (with up to one hop each)

> We use r = 2 since it performed better than r = 1 in full multigrid model
» Cost function (with random vectors uy, b)

Cc= IMS(ukvb) — Ukyr 2

23 / 48

Smoother model

24 / 48

Results for smoother

® PTC, 4 layers (2—2—2—1), 1 hop
LPTC, 4 layers (2 -2 — 2 — 1), 1 hop

10° 15.0
=}
-5 125 - a & @
=] L 4 -
S 19-1 4]
£ 10 < 100
E =]
1<)
éj O 75 1
= =
|73 —2 =]
o 10 E = 5.0 1
&} b
5
= 25 A
1073 T T T T T 0.0 T T T T T
0 250 500 750 1000 0 250 500 750 1000
Training Step Training Step

» lteration count gain from using Ms as preconditioner for Du = b with initial
guess zero

> Performance is ~ twice that of M, with 1 layer/1 hop (since r = 2)

> Trained PTC model is used as initial weights for LPTC model (but no benefit
from LPTC)

25 / 48

Multigrid model setup

» Duplicate the input feature and preserve one copy for smoother

P> Restrict other copy to coarse grid and apply our coarse-grid model

» Prolongate result to fine grid

» Combine copy of initial feature and result of coarse-grid model to two input
features for last four layers (= smoother)

26 / 48

Combined two-level multigrid model

il
//
//
_ II Hﬂ

> Allows for efficient transport of information over both short and long-distances

» Additional levels: Recursively replace coarse-grid layer by entire model

27 / 48

Training strategy for multigrid model

» In principle, model should work well with layer weights from individual models

» Performance can be further improved by continued training with cost function

C = [Mby — up|? + |Mby — ug? (%)
> by = Dwcwvi, up = v1, by = va, Uy = Dy ve
» vi and v» are random vectors with |bp| = |bs| = 1

» Focus on high- or low modes could be shifted by relative prefactor in (i)

28 / 48

Results for full multigrid model

® MG model
B MG model, different conf.
6x 1072 50
= m E g -
‘% 40 A []
[J
o O]] o o
9]
= o +
B 4 x 10 5 30 @
£ 8
2 3x10-2 g 20 qm
S s
S =
2 10 o
=
2x1072 4 T T 0 - T T
0 20 40 0 20 40

Training Step

> Performance greatly improved over individual high-/low-mode models

» Continued training converges very quickly

Training Step

» Transfer learning works again after brief retraining

20 / 48

Summary of important points so far

> We reformulate the problem of constructing a (multigrid) preconditioner in the
language of gauge-equivariant neural networks.

» We find that such networks can learn the general paradigms of multigrid and
significantly reduce the iteration count of the outer solver.

» Transfer learning: If we change the configuration or parameters such as s and
B, only very little or no extra training is needed.

» We can implement communication avoidance naturally.

» We provide a flexible implementation interface (GPT,
http://github.com/lehner/gpt) for experimentation and further studies.

30 / 48

A broader look

Motivation of research program

» Goal: approximate propagators D1, det(D), and hadronic correlation functions

» Deep networks work (cf. Krylov solvers)

» Multigrid paradigm makes much shallower models perform as well as deep ones
(cf. multigrid solvers)

» By casting it in language of neural networks it is easy to investigate non-Krylov
methods.

» Focus on explicitly gauge-equivariant models such that gauge-equivariance does
not have to be learned. Helps with transfer learning.

31/ 48

The gauge-equivariant multigrid neural network research program
» Status after arXiv:2302.05419:

» We had a multigrid preconditioner model

» with conventional construction of restriction and prolongation layers
(RL/PL)

» and without explicit gauge degree of freedom on coarse grid

» which approximates a Dirac propagator D~1 well both at short and long
distances.

32/ 48

The gauge-equivariant multigrid neural network research program
» In second paper arXiv:2304.10438:
» Keep explicit gauge degree of freedom on coarse grid and
> use a gauge-equivariant layer on coarse grid (reduced number of weights).
» Parametrize RL and PL with gauge-invariant weights (spin matrices).

» Show absence of critical slowing down in preconditioned solve even for

Q #0.

33 /48

The gauge-equivariant multigrid neural network research program

» Future work:

> Relate RL/PL spin matrices to energy density, topology density, Wilson
loops via gauge-invariant models. This would eliminate most of the
typical multigrid setup cost. Useful for ensemble generation.

» Address fermions with more complex spectrum (such as DWF)

» Do not just approximate D! but directly complex hadronic correlation
functions to be used in AMA.

34 / 48

Explicit gauge degree of freedom on coarse grid

> Field on fine grid: ¢ : S — V5 ® Vg, x — ¢(x) with
local gauge space (V;), non-gauge space (V¢), and
set of fine-grid sites S

B(y) ={e,}
> Gauge transformation: ¢(x) — Q(x)¢(x) Bi(y)=-e

> Set of coarse sites 5 and block map B : 5 — P(S),y — B(y)
(sites B(y) on fine grid correspond to y on coarse grid)

> A reference site B, : S — S,y — B,(y) such that B,(y) C B(y)

> Field on coarse grid: ¢:5 — Ve ® \76-,y — <;3(y)
(note: same local gauge space as on fine grid)

> Find restriction and prolongation layers such that ¢(y) — €(y)d(y) under
gauge transformation Q with

Q(y) = QB(y)).

35 / 48

> Define RL/PL by pooling and subsampling layers:
RL = SubSample o Pool , (1)
PL = Pool® o SubSample . ()

(weights in RL and PL can differ, so not necessarily RLT = PL)
» The pooling layer Pool: 7y, — Fy, ¢ — Pool¢ is given by

Poolg(x) = > Wa(x) Tqe(x) ®3)

qeQ

with g = (p, U), path p, gauge field U, and T4 = T,(U). Weights W,(x) are
spin matrices, separated gauge DOF.

» The subsampling layer is given by

SubSampleg(y) = ¢(B(y)) - (4)

36 / 48

More details on the pooling layer

> Gauge field U in T,(U) needs to satisfy
0,(x) = Q) T ()R (x +). 5)
In practice, we use a variety of differently smeared links.

» Complete set of paths P transports every element of B(y) exactly once to B,(y)
= |P| = [B(y)I

» Efficient implementation for each complete set of path possible: GPT

> & = RL¢ yields ¢~>(y) — fl(y)zz;(y) under gauge transformations
B(x) = Q(x)o(x)

37 / 48

Explicit gauge-equivariant coarse layers need coarse gauge field

» Plain coarse gauge field construction:

B.(y') - Biy) = bt

with unit vector {i in direction p and b € NT. The coarse-grid gauge field Uu(y)

corresponding to this pair of reference points is then simply

Uu(y) = Uu(Br(¥) - Un(Br(y) + (b — 1)i1).

» Galerkin coarse gauge field construction:
Ou(y) = D(y,y +)
with

D=RLoDoPL

for Wilson-clover D.

38 / 48

Spectrum of Wilson-clover Dirac operator

0.8 4

0.6 1

0.4 4

0.2 4

» B =6 pure Wilson gauge field with topological charge Q =1

> 83 X 16 lattice sites

» Wilson-clover operator with m = —0.5645 and csw = 1

39 / 48

Model details |
» Need prescription for g in

Poolep(x) = > We(x) Tae(x)

qeQ

with g = (p, U), path p, gauge field U, and T4 = T,(0).

» For fixed i, we define paths p(ij) that connect all elements of B(y), enumerated
by j =1,...,|B(y)l, to the reference site B/(y). For different j we use different
prescriptions for the paths p(/), and then use the couples gj = (p(’f)7 U(’)).

» We define four different prescriptions pi, ..., pa (depth first/breadth first
lexicographic/reverse lexicographic)

and set p(i) = ﬁfj)mod e

40 / 48

Model details Il

> Concretely, we use 9 different gauge fields O with i =1,...,9. We construct
the U() by applying i(i — 1)/2 steps of p = 0.1 stout smearing to the
unsmeared gauge fields U. Smearing radius proportional to /i(i — 1).

> So we have 9 different spin-matrix fields Wi(x),. .., Wo(x).

> In practice, sufficient to use same weights in PL and RL such that PL = RLT.
Found no benefits from general case.

> Coarse-grid size 23 x 4

41/ 48

Training setup — How to train RL/PL?

» Obvious approach: train
PLoRL 9

as an autoencoder with training vectors from the near-null space.

» This could be done with a cost function
C = |PLoRLvy — vg? (10)
with fine-grid vectors vy. For each training step we select a random element of
ve € {u1,...,us} of the near-null space vectors u; defined above.

» Use Adam optimizer.

» Result: did not perform well in MG preconditioner!

42 / 48

Training setup — How to train RL/PL?

» What was missing: PL o RL should also project high eigenmodes to zero (if not
could overload smoother layers)

» Found also additional benefit from encouraging RL o PL = 1 such that we have
a proper projection operator P = PL o RL with P? = P.

» We implement this strategy by using the cost function
C = |PLoRLvy — vg|2 4+ |PLoRLv, — Ppvp|2 + |RL o PLve — vel|? (11)

with additional fine-grid vector v;, and coarse-grid vector v.. For each training
step vy and v¢ are random vectors with elements normally distributed about
zero.

Py is the blocked low-mode projector

Py =wiw, W(y,x)" =" @ (x)éf (12)

with block-orthonormalized &; from u;.

» All vectors vy, vp, and v¢ are normalized to unit length before being used in the
cost function.

43 / 48

Training setup — How to train RL/PL?

v

In first paper s = 12, here s = 4 was sufficient.

Training converged after O(1000) steps.

Yields Wi(x),. .., Wo(x) but still costly since we first need near-null space
vectors.
In future work: obtain W;(x) as output of gauge-invariant models based on

energy density E(x), topology density Q(x), plaquette P(x) and other Wilson
loops. At this point the u; are no longer needed. (In a sense we generate
training data for the next step in this work.)

44 | 48

Training setup — combined preconditioner model

> First train RL/PL as described above.
» Then train combined model with frozen RL/PL using cost function
C = |Mby — up|* + [Mby — ug|? (13)
with by, = Dvy, up = v1, by = vp, and uy = D1y,

» Further training with unfrozen RL/PL leads to no notable improvement.

45 / 48

Results — critical slowing down

® Unpreconditioned
B Smoother-only model
V Gauge-equivariant Galerkin model

5000
[
[
4000 - °
. [
E
S 0004 ™ °
ko = °
=
& 2000 -
O
&
1000 " m
L AA v v v
0 T T T T

—0.564 —0.562 —0.560 —0.558
m

» Show outer iteration count in GMRES to 10~8 precision with and without
model as preconditioner.

» Model with Galerkin gauge fields removes critical slowing down.

46 / 48

Results — critical slowing down

® Original multi-grid model
B Gauge-equivariant plain coarse-link model
V¥ Gauge-equivariant Galerkin model

400

350 1

300 4

<« n
|

“<«% ™

Iteration Count
Do
o
i=]
L
o <«
[]

0 T T T T
—0.564 —0.562 —0.560 —0.558
m

» Original multi-grid model also removes critical slowing down.

» Model with plain gauge fields shows small remnants of critical slowing down.

47 / 48

Summary and Outlook

>

We now have an explicitly gauge-equivariant model on coarse and fine grid.

The multigrid model removes critical slowing down when used as a
preconditioner.

We factored the gauge degree of freedom in RL and PL and learned the
resulting spin-matrix weights.

In future work, these spin-matrices will be outputs of gauge-invariant models
themselves, which then removes the typical setup cost.

Complex hadronic correlation functions can be approximated by intermediate
approximations to propagators. However, it may be more efficient to use our
architectures to directly approximate the correlation functions for use in AMA.

Good approximations of propagators may be also be useful in HMC and other
generative models.

Investigate cases with more challenging spectrum (such as DWF).

48 / 48

