
Gauge-equivariant multigrid neural

networks for lattice QCD

based on Lehner, Wettig 2302.05419, 2304.10438

Christoph Lehner

(University of Regensburg)

May 15, 2023 – HU Berlin / NIC DESY Zeuthen joint lattice seminar

Preconditioning

▶ In lattice QCD, wall-clock time is often dominated by solution of Dirac equation

Du = b

Usually done by an iterative solver (here, GMRES)

▶ Time to solution is determined by condition number of Dirac matrix

▶ Condition number increases dramatically in physical quark-mass and
continuum limit

▶ Can be addressed by Preconditioning

▶ Find a preconditioner M such that M ≈ D−1

▶ Define v = M−1u and use

DMM−1u = (DM)v = b

to solve for v with preconditioned matrix DM (smaller condition number)

▶ Then u = Mv

1 / 48

Low and high modes

▶ Consider the eigendecomposition of D

D =
∑
n

λn|n⟩⟨n|

Preconditioner should approximate low-mode and high-mode components of
D−1

▶ State-of-the-art algorithms (multigrid) are
designed to do this

▶ We will follow this paradigm, but here we
learn the preconditioner

Source: https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd

2 / 48

https://summerofhpc.prace-ri.eu/multithreading-the-multigrid-solver-for-lattice-qcd

Gauge-equivariant layers

Parallel transport

▶ Consider a field ϕ(x) with x ∈ S (space-time lattice, dim = d) and
ϕ ∈ VI = VG ⊗ VḠ

(gauge space: VG = CN , non-gauge space: VḠ = CN̄)

▶ Also consider an SU(N) gauge field Uµ(x) acting on VG

▶ Define the parallel-transport operator for a path p = p1, . . . , pnp with
pi ∈ {±1, . . . ,±d}

Tp = Hpnp · · ·Hp2Hp1 with Hµϕ(x) = U†
µ(x − µ̂)ϕ(x − µ̂)

▶ Hµ transports information by a single hop in direction µ̂

▶ Hµ acts on field; new field Hµϕ is evaluated at x

▶ Example: Tp = H−1H−2H−1H2H2

3 / 48

Gauge equivariance

▶ A gauge transformation by Ω(x) ∈ SU(N) acts in the usual way

ϕ(x) → Ω(x)ϕ(x)

Uµ(x) → Ω(x)Uµ(x)Ω
†(x + µ̂)

▶ Such gauge transformations commute with Tp for any path p

Tpϕ(x) → Ω(x)Tpϕ(x)

▶ This is an example of gauge equivariance:

An object (here: ϕ) and the transformed object (here: Tpϕ)
transform in the same way under a gauge transformation.

4 / 48

Parallel-transport convolutions

▶ Parallel-transport convolution layer and local parallel-transport convolution layer

ψa(x)
PTC
=

∑
b

∑
p∈P

W bp
a Tpϕb(x) ψa(x)

LPTC
=

∑
b

∑
p∈P

W bp
a (x)Tpϕb(x)

▶ a = output feature index
▶ b = input feature index
▶ P = set of paths
▶ W bp

a acts in VḠ (here: 4× 4 spin matrix)
▶ Elements of W : “layer weights”

▶ Layers are gauge-equivariant

▶ No activation function since we want
to learn a linear preconditioner

5 / 48

Restriction and prolongation layers

▶ On the coarse grid S̃ we have fields ϕ̃(y) with y ∈ S̃ and ϕ̃ ∈ ṼI

▶ ṼI has no gauge degrees of freedom → no gauge transformations on ṼI

▶ Restriction and prolongation layer (with B = block map from S̃ to S)

ψ̃(y)
RL
=

∑
x∈B(y) W (y , x)ϕ(x)

ψ(x)
PL
= W (y , x)†ϕ̃(y)

6 / 48

Graphical conventions for features and layers

▶ A feature is represented by a plane

▶ A layer sits between planes and is represented by paths plus a dashed arrow

▶ For restriction/prolongation, a layer is represented by a square frustum

7 / 48

Parallel and identity layers

▶ Parallel layers act on the same input feature in parallel

▶ Identity layer: simple copy operation, i.e., output = input

▶ Example: (All layers except L1 are identity layers)

L1

L2

8 / 48

Communication avoidance

▶ On machines with many nodes, sub-volumes are assigned to different MPI
processes

▶ We also consider models where no information is communicated between
sub-volumes (by setting the links Uµ(x) connecting sub-volumes to zero)

▶ We find that the performance of these models is close to those with
communication
→ Overall wall-clock time could be lower since no time is spent on
communication

9 / 48

Wilson-clover Dirac operator

Dirac operator

▶ The Wilson Dirac operator can be written in terms of single hops:

DW =
1

2

4∑
µ=1

γµ(H−µ − H+µ)−
1

2

4∑
µ=1

(H−µ + H+µ − 2) +m

▶ For Wilson-clover, consider closed paths with four hops and define

Qµν = H−µH−νH+µH+ν + H−νH+µH+νH−µ

+ H+νH−µH−νH+µ + H+µH+νH−µH−ν .

Then

DWC = DW − csw

4

4∑
µ,ν=1

σµνFµν

with

Fµν =
1

8
(Qµν − Qνµ) σµν =

1

2
(γµγν − γνγµ)

10 / 48

Numerical details and eigenvalue spectrum

▶ V = 83 × 16, β = 6.0 (pure gauge), cSW = 1, periodic boundary conditions for
all fields

▶ m = −0.6 is chosen so that DWC is tuned to near criticality (i.e., real part of
smallest eigenvalue ≈ 0) → solution of Du = b is challenging problem

11 / 48

High-mode preconditioners

Model setup and training strategy

▶ High-mode part of Dirac spectrum is related to short-distance behavior
→ Expect one or two layers with small number of hops to show gain in iteration
count

▶ Consider a linear model M mapping a vector x to Mx

▶ Supervised learning approach with training step as follows:

▶ Pick random vector v from Gaussian distribution (mean zero, standard
deviation 1)

▶ Compute training tuple (DWCv , v) and optimize cost function

C = |MDWCv − v |2

→ Model learns to map DWCv to v (and hence M ≈ D−1
WC)

▶ Optimizer is Adam Kingma & Ba, arXiv:1412.6980 [cs.LG]

▶ Derivatives w.r.t. model weights computed using backpropagation

▶ Training data set is unbounded in size → no need to add a regulator

▶ Cost function is dominated by high modes

12 / 48

https://arxiv.org/pdf/1412.6980

Models chosen for high-mode preconditioner

▶ One layer, one hop (i.e., 9 paths)

T0 = 1 , T1 = H1 , T2 = H2 , T3 = H3 , T4 = H4 ,

T5 = H−1 , T6 = H−2 , T7 = H−3 , T8 = H−4

▶ One layer, two hops: extend the above by 56 two-hop paths

HaHb with a, b ∈ {−4,−3,−2,−1, 1, 2, 3, 4} (a ̸= −b)

▶ “Deep” network of two one-hop layers:

▶ 1 → 1 → 1: Two successive layers with one hop each
▶ 1 → 2 → 1: Two output features in first layer, two input features in

second layer

▶ PTC (layer weights constant) and LPTC (layer weights depend on x)

▶ Communication avoidance: Uµ(x) ≡ 0 between subvolumes of size 43 × 8

13 / 48

Measure of performance

Iteration count gain =
Iteration count without preconditioner

Iteration count with preconditioner

▶ Iteration count refers to outer solver (here, GMRES)

14 / 48

Results for high-mode preconditioner (one layer, one hop)

0 250 500 750 1000

Training Step

10−3

10−2

10−1

C
o
st

F
u
n
ct

io
n

0 250 500 750 1000

Training Step

0

2

4

6

It
er

a
ti

o
n

C
o
u
n
t

G
a
in

LPTC, 1 layer, 1 hop

PTC, 1 layer, 1 hop

LPTC, 1 layer, 1 hop, comm. avoid.

PTC, 1 layer, 1 hop, comm. avoid.

▶ No gain from LPTC (and they require more training)

▶ Communication-avoiding version only slightly worse (could be amortized)

15 / 48

Results for high-mode preconditioner (deep network/multiple hops)

0 250 500 750 1000

Training Step

10−3

10−2

10−1

C
o
st

F
u

n
ct

io
n

0 250 500 750 1000

Training Step

0

2

4

6

8

10

It
er

a
ti

o
n

C
o
u

n
t

G
a
in

PTC, 2 layers (1→ 1→ 1), 1 hop

PTC, 2 layers (1→ 2→ 1), 1 hop

PTC, 1 layer, 2 hops

▶ 1 → 2 → 1 model performs best (and gives ∼ twice the gain of 1 layer/1 hop
model)

▶ Since layers are linear, deep models are not more expressive than shallow models
with same number of hops (but easier to train b/o smaller number of weights)
→ 2-hop model should reach similar performance with improved training
procedure

16 / 48

Transfer learning

0 100 200 300 400

Training Step

10−3

10−2

10−1

C
o
st

F
u
n
ct

io
n

0 100 200 300 400

Training Step

0

2

4

6

8

10

It
er

a
ti

o
n

C
o
u
n
t

G
a
in

PTC, 1 layer, 1 hop, different conf.

PTC, 1 layer, 1 hop, β = 5.9

PTC, 1 layer, 1 hop, m = −0.55

▶ No retraining required for (i) different configuration from same ensemble,
(ii) configuration with different β, (iii) different mass

▶ Performance varies slightly between configurations

▶ m = −0.55 is not tuned to criticality → Easier initial problem → Smaller gain

17 / 48

Low-mode preconditioners

Possible approaches

▶ Low-mode part of Dirac spectrum is related to long-distance behavior
→ Need deep network of (L)PTC layers to propagate information over long
distances

▶ Alternative: use multigrid paradigm

▶ Define coarse version of the lattice

▶ Define restriction and prolongation operations (= layers)

▶ Preserve low-mode part of Dirac spectrum
Lüscher arXiv:0706.2298 [hep-lat]

18 / 48

https://arxiv.org/pdf/0706.2298

Model setup

▶ Reminder: coarse lattice = S̃ , internal vector space = ṼI with s = dim(ṼI)

▶ Find s vectors in the near-null space of D

Dui ≈ 0 (i = 1, . . . , s)

▶ Apply GMRES for D with source vector = 0 and random initial guess
(solve to 10−8)

▶ This removes high-mode components and leaves linear combination of
low-modes

▶ Block the ui

▶ One site y ∈ S̃ corresponds to a set of sites (or block) B(y) ∈ S

▶ Blocked vector uyi lives on the sites of B(y)

▶ Orthonormalize the uyi within each block → ūyi

▶ Then the prolongation map (see slide 6) is defined by

W (y , x)† =
s∑

i=1

ūyi (x)ê
†
i

with x ∈ B(y) and êi the canonical unit vectors of ṼI

19 / 48

Training strategy

▶ Coarse-grid operator is defined as

D̃ = RDWCP

with R and P defined according to restriction and prolongation layers (slide 6)

▶ Coarse-grid model M̃ contains single LPTC layer with zero- and one-hop paths
and gauge fields replaced with 1 (layer is denoted by cLPTC)

▶ Same training strategy as before, with cost function

C = |M̃D̃v − v |2

(this avoids costly inversion of D̃−1)

20 / 48

Results for low-mode preconditioner (cLPTC layer)

0 2500 5000 7500 10000

Training Step

10−3

10−2

10−1

100

C
o
st

F
u
n
ct

io
n

0 2500 5000 7500 10000

Training Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

It
er

a
ti

o
n

C
o
u
n
t

G
a
in

cLPTC, 1 layer, 1 hop

cLPTC, 1 layer, 1 hop, diff. conf.

▶ Iteration count gain refers to inversion of D̃ (we use S̃ = 23 × 4 and s = 12)

▶ Longer training period compared to high-mode preconditioner

▶ Transfer learning works with moderate retraining

21 / 48

Multi-grid preconditioners

Model setup

▶ Combine the high- and low-mode models to learn a model M that approximates
the short- and long-distance features of D−1

▶ First create a short-distance model that accepts a second input feature (initial guess)

▶ Model plays role of smoother in multigrid paradigm

▶ Initial guess from long-distance model acting on coarse grid

22 / 48

Smoother model setup and training strategy

▶ Find a sequence of uk that approximately solve Du = b (exact solution for
k → ∞)

▶ Assume we have a high-mode model Mh that approximates D−1

▶ Smoother maps the tuple (uk , b) to uk+1

uk+1 = (1−MhD)uk +Mhb

= uk +Mh(b − Duk) (∗)

(“iterative relaxation approach” or “defect correction” with defect b−Du)

▶ Both D and high-mode model Mh can be represented by (L)PTC layers
→ Train a model Ms to map (uk , b) to a uk+r (with r ∈ N+)

▶ Model must have two input features and one output feature

▶ Every iteration of (∗) corresponds to two (L)PTC layers
→ Construct Ms using 2r successive layers (with up to one hop each)

▶ We use r = 2 since it performed better than r = 1 in full multigrid model

▶ Cost function (with random vectors uk , b)

C = |Ms(uk , b)− uk+r |2

23 / 48

Smoother model

24 / 48

Results for smoother

0 250 500 750 1000

Training Step

10−3

10−2

10−1

100

C
o
st

F
u

n
ct

io
n

0 250 500 750 1000

Training Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

It
er

a
ti

o
n

C
o
u

n
t

G
a
in

PTC, 4 layers (2→ 2→ 2→ 1), 1 hop

LPTC, 4 layers (2→ 2→ 2→ 1), 1 hop

▶ Iteration count gain from using Ms as preconditioner for Du = b with initial
guess zero

▶ Performance is ∼ twice that of Mh with 1 layer/1 hop (since r = 2)

▶ Trained PTC model is used as initial weights for LPTC model (but no benefit
from LPTC)

25 / 48

Multigrid model setup

▶ Duplicate the input feature and preserve one copy for smoother

▶ Restrict other copy to coarse grid and apply our coarse-grid model

▶ Prolongate result to fine grid

▶ Combine copy of initial feature and result of coarse-grid model to two input
features for last four layers (= smoother)

26 / 48

Combined two-level multigrid model

▶ Allows for efficient transport of information over both short and long-distances

▶ Additional levels: Recursively replace coarse-grid layer by entire model

27 / 48

Training strategy for multigrid model

▶ In principle, model should work well with layer weights from individual models

▶ Performance can be further improved by continued training with cost function

C = |Mbh − uh|2 + |Mbℓ − uℓ|2 (∗)

▶ bh = DWCv1, uh = v1, bℓ = v2, uℓ = D−1
WCv2

▶ v1 and v2 are random vectors with |bh| = |bℓ| = 1

▶ Focus on high- or low modes could be shifted by relative prefactor in (∗)

28 / 48

Results for full multigrid model

0 20 40

Training Step

2× 10−2

3× 10−2

4× 10−2

6× 10−2

C
o
st

F
u
n
ct

io
n

0 20 40

Training Step

0

10

20

30

40

50

It
er

a
ti

o
n

C
o
u
n
t

G
a
in

MG model

MG model, different conf.

▶ Performance greatly improved over individual high-/low-mode models

▶ Continued training converges very quickly

▶ Transfer learning works again after brief retraining

29 / 48

Summary of important points so far

▶ We reformulate the problem of constructing a (multigrid) preconditioner in the
language of gauge-equivariant neural networks.

▶ We find that such networks can learn the general paradigms of multigrid and
significantly reduce the iteration count of the outer solver.

▶ Transfer learning: If we change the configuration or parameters such as κ and
β, only very little or no extra training is needed.

▶ We can implement communication avoidance naturally.

▶ We provide a flexible implementation interface (GPT,
http://github.com/lehner/gpt) for experimentation and further studies.

30 / 48

A broader look

Motivation of research program

▶ Goal: approximate propagators D−1, det(D), and hadronic correlation functions

▶ Deep networks work (cf. Krylov solvers)

▶ Multigrid paradigm makes much shallower models perform as well as deep ones
(cf. multigrid solvers)

▶ By casting it in language of neural networks it is easy to investigate non-Krylov
methods.

▶ Focus on explicitly gauge-equivariant models such that gauge-equivariance does
not have to be learned. Helps with transfer learning.

31 / 48

The gauge-equivariant multigrid neural network research program

▶ Status after arXiv:2302.05419:

▶ We had a multigrid preconditioner model 10

FIG. 11. The combined two-level multi-grid model studied in this work. The use of the multi-grid paradigm allows for
the e�cient transport of information over both short and long-distances. Additional levels can be introduced by recursively
replacing the coarse-grid layer (limited by the blue features) by the entire model as presented above.

Also note that we use a rather small lattice volume of
83 ⇥ 16 in this work. In future work, we will investigate

2 � 10�2

3 � 10�2

4 � 10�2

6 � 10�2

C
o
st

F
u
n
ct

io
n

0 20 40

Training Step

0

10

20

30

40

50

It
er

a
ti

o
n

C
o
u
n
t

G
a
in

MG model

MG model, di�erent conf.

FIG. 12. Convergence of the cost function (37) and itera-
tion count gain for the complete multi-grid model. We use
the weights of the individually trained model components as
starting point and show further improvement by training the
combined model. The model also performs well on a di↵er-
ent gauge configuration and quickly converges to optimum
performance after a modest amount of re-training.

multi-grid models in more challenging large-volume sim-
ulations, where even larger iteration count gains should
be achievable.

VII. SUMMARY AND OUTLOOK

In this paper we have initiated a program to use
gauge-equivariant neural networks to learn precondition-
ers in lattice QCD. We introduced a number of building
blocks from which suitable models can be constructed:
(i) parallel-transport convolution layers that can include
arbitrary paths, with either global or local weights, (ii)
restriction and prolongation layers that implement the
multi-grid paradigm, and (iii) parallel layers that act on
a single input feature.

To solve the Dirac equation for the Wilson-clover Dirac
operator we have first constructed models that approx-
imate the high-mode and low-mode component of the
operator separately. We then combined these models
in a two-level multi-grid model, which can be extended
straightforwardly to an arbitrary number of levels. In all
cases we found that the models reduce the iteration count
of the outer solver significantly, e.g., by up to O(40) in the
multi-grid model. We also found that transfer learning
works: If we consider another gauge configuration (for
the same or a slightly di↵erent value of �) or a slightly
di↵erent quark mass, only a modest amount of re-training
(or none at all) is required for the model to perform e�-
ciently again.

We also introduced a communication-avoiding algo-
rithm in which layers do not transfer information be-
tween sub-volumes assigned to di↵erent MPI processes.
In our numerical experiments we found that the perfor-
mance, i.e., the iteration count gain, of the corresponding
model is only slightly reduced. We expect that on large
supercomputers, the wall-clock time saved by avoiding

▶ with conventional construction of restriction and prolongation layers
(RL/PL)

▶ and without explicit gauge degree of freedom on coarse grid

▶ which approximates a Dirac propagator D−1 well both at short and long
distances.

32 / 48

The gauge-equivariant multigrid neural network research program

▶ In second paper arXiv:2304.10438:

▶ Keep explicit gauge degree of freedom on coarse grid and

▶ use a gauge-equivariant layer on coarse grid (reduced number of weights).

▶ Parametrize RL and PL with gauge-invariant weights (spin matrices).

▶ Show absence of critical slowing down in preconditioned solve even for
Q ̸= 0.

33 / 48

The gauge-equivariant multigrid neural network research program

▶ Future work:

▶ Relate RL/PL spin matrices to energy density, topology density, Wilson
loops via gauge-invariant models. This would eliminate most of the
typical multigrid setup cost. Useful for ensemble generation.

▶ Address fermions with more complex spectrum (such as DWF)

▶ Do not just approximate D−1 but directly complex hadronic correlation
functions to be used in AMA.

34 / 48

Explicit gauge degree of freedom on coarse grid

▶ Field on fine grid: ϕ : S → VG ⊗ VḠ , x 7→ ϕ(x) with
local gauge space (VG), non-gauge space (VḠ), and
set of fine-grid sites S

▶ Gauge transformation: ϕ(x) → Ω(x)ϕ(x)

▶ Set of coarse sites S̃ and block map B : S̃ → P(S), y 7→ B(y)
(sites B(y) on fine grid correspond to y on coarse grid)

▶ A reference site Br : S̃ → S, y 7→ Br (y) such that Br (y) ⊂ B(y)

▶ Field on coarse grid: ϕ̃ : S̃ → VG ⊗ ṼḠ , y 7→ ϕ̃(y)
(note: same local gauge space as on fine grid)

▶ Find restriction and prolongation layers such that ϕ̃(y) → Ω̃(y)ϕ̃(y) under
gauge transformation Ω with

Ω̃(y) = Ω(Br (y)) .

B(y) = {•, •}
Br (y) = •

35 / 48

2

tails of the Wilson-clover Dirac spectrum on a gauge con-
figuration with nonzero topological charge. In Sec. IV we
discuss the training strategy for the (un)pooling layers,
and in Sec. V we show that the models resolve critical
slowing down. In Sec. VI we summarize our results and
provide an outlook on our future research program.

II. GAUGE-EQUIVARIANT COARSENING

In the following, we build on notation defined in
Ref. [12] but introduce an explicitly gauge-equivariant
coarsening procedure using gauge-equivariant pooling
and unpooling layers that are combined with subsam-
pling layers.

A. Review of notation and coarse-grid vector space

We consider a d-dimensional space-time lattice, the
fine grid, and denote the set of its sites by S. We de-
fine a field ' : S ! VI , x 7! '(x) on the fine grid with
internal vector space

VI = VG ⌦ VḠ , (1)

where VG is a gauge vector space and VḠ is a non-
gauge vector space, respectively. The set of such fields
is denoted by F'. Under a gauge transformation ⌦ :
S ! End(VG), x 7! ⌦(x), the fields transform as
'(x) ! ⌦(x)'(x). Furthermore, we consider gauge fields
Uµ : S ! End(VG), x 7! Uµ(x), where µ 2 {1, . . . , d}. In
the case of QCD, Uµ(x) 2 SU(3) ⇢ End(VG). We will use
U as a short-hand notation for the tuple (U1, . . . , Ud).

We also consider a d-dimensional coarse grid with set
of sites S̃. We define fields on the coarse grid '̃ : S̃ ! ṼI ,
y 7! '̃(y) with internal vector space ṼI . The set of such
coarse fields is denoted by F'̃. In contrast to Ref. [12]

ṼI = VG ⌦ ṼḠ (2)

i.e., in the current work the local gauge space on the
coarse grid is the same as on the fine grid.

As in Ref. [12], we define a block map B : S̃ ! P(S),
where P denotes the power set. We also define a map

Br : S̃ ! S, y 7! Br(y) (3)

that selects for each site y on the coarse grid a reference
site Br(y) on the fine grid. In the following, we only
consider maps Br for which Br(y) 2 B(y). The coarse
fields shall transform as

'̃(y) ! ⌦̃(y)'̃(y) (4)

with

⌦̃(y) = ⌦(Br(y)) (5)

under gauge transformations ⌦. For a related discussion
of gauge-equivariant blocking schemes, see, e.g., Ref. [25].

RL PL

FIG. 1. Graphical representation of restriction layer (left) and
prolongation layer (right) for a single feature. The input and
output features are represented by the planes, and the layers
are represented by the paths drawn and the arrow mapping
the input to the output feature. The reference site is drawn
in black.

B. Restriction and prolongation layers

The restriction layer (RL) can be written as the com-
position of a pooling layer (Pool) and a subsampling layer
(SubSample),

RL = SubSample � Pool . (6)

The pooling layer Pool: F' ! F', ' 7! Pool' is given
by

Pool'(x) =
X

q2Q

Wq(x)Tq'(x) . (7)

In the following we describe the elements of this equa-
tion in detail. The sum is over couples (i.e., two-tuples)
q = (p, Ū) that consist of a path p and a gauge field Ū .
A path p is defined as a sequence of hops without refer-
ence to a starting or end point. A set of paths P shall
be called “complete” if it connects every site in B(y) to
Br(y) exactly once. A complete set of paths therefore
always has |B(y)| elements, where |X| denotes the cardi-
nality of a set X. In the current work, we only consider
couples with |Q| = n|B(y)| and n 2 N+ such that n pre-
scriptions to construct the gauge field are combined with
n prescriptions to construct a complete set of paths.

The pooling layer is parametrized by weights Wq(x) 2
End(VḠ). In the context of the current paper the Wq(x)
are spin matrices.

Finally, the operator Tq for q = (p, Ū) is the parallel-
transport operator Tp : F' ! F', ' 7! Tp' defined in
Ref. [12] with gauge fields U replaced by Ū .1 The gauge
fields Ū entering Tp do not have to be the original fine-
grid gauge links U as long as they transform in the usual
way, i.e., as

Ūµ(x) ! ⌦(x)Ūµ(x)⌦†(x + µ̂) (8)

under gauge transformations ⌦. We will make use of this
freedom in this work.

1 In Eq. (7), Tq'(x) means that the field Tq' is evaluated at x.

▶ Define RL/PL by pooling and subsampling layers:

RL = SubSample ◦ Pool , (1)

PL = Pool† ◦ SubSample† . (2)

(weights in RL and PL can differ, so not necessarily RL† = PL)

▶ The pooling layer Pool: Fϕ → Fϕ, ϕ 7→ Poolϕ is given by

Poolϕ(x) =
∑
q∈Q

Wq(x)Tqϕ(x) (3)

with q = (p, Ū), path p, gauge field Ū, and Tq = Tp(Ū). Weights Wq(x) are
spin matrices, separated gauge DOF.

▶ The subsampling layer is given by

SubSampleϕ(y) = ϕ(Br (y)) . (4)

36 / 48

More details on the pooling layer
2

tails of the Wilson-clover Dirac spectrum on a gauge con-
figuration with nonzero topological charge. In Sec. IV we
discuss the training strategy for the (un)pooling layers,
and in Sec. V we show that the models resolve critical
slowing down. In Sec. VI we summarize our results and
provide an outlook on our future research program.

II. GAUGE-EQUIVARIANT COARSENING

In the following, we build on notation defined in
Ref. [12] but introduce an explicitly gauge-equivariant
coarsening procedure using gauge-equivariant pooling
and unpooling layers that are combined with subsam-
pling layers.

A. Review of notation and coarse-grid vector space

We consider a d-dimensional space-time lattice, the
fine grid, and denote the set of its sites by S. We de-
fine a field ' : S ! VI , x 7! '(x) on the fine grid with
internal vector space

VI = VG ⌦ VḠ , (1)

where VG is a gauge vector space and VḠ is a non-
gauge vector space, respectively. The set of such fields
is denoted by F'. Under a gauge transformation ⌦ :
S ! End(VG), x 7! ⌦(x), the fields transform as
'(x) ! ⌦(x)'(x). Furthermore, we consider gauge fields
Uµ : S ! End(VG), x 7! Uµ(x), where µ 2 {1, . . . , d}. In
the case of QCD, Uµ(x) 2 SU(3) ⇢ End(VG). We will use
U as a short-hand notation for the tuple (U1, . . . , Ud).

We also consider a d-dimensional coarse grid with set
of sites S̃. We define fields on the coarse grid '̃ : S̃ ! ṼI ,
y 7! '̃(y) with internal vector space ṼI . The set of such
coarse fields is denoted by F'̃. In contrast to Ref. [12]

ṼI = VG ⌦ ṼḠ (2)

i.e., in the current work the local gauge space on the
coarse grid is the same as on the fine grid.

As in Ref. [12], we define a block map B : S̃ ! P(S),
where P denotes the power set. We also define a map

Br : S̃ ! S, y 7! Br(y) (3)

that selects for each site y on the coarse grid a reference
site Br(y) on the fine grid. In the following, we only
consider maps Br for which Br(y) 2 B(y). The coarse
fields shall transform as

'̃(y) ! ⌦̃(y)'̃(y) (4)

with

⌦̃(y) = ⌦(Br(y)) (5)

under gauge transformations ⌦. For a related discussion
of gauge-equivariant blocking schemes, see, e.g., Ref. [25].

RL PL

FIG. 1. Graphical representation of restriction layer (left) and
prolongation layer (right) for a single feature. The input and
output features are represented by the planes, and the layers
are represented by the paths drawn and the arrow mapping
the input to the output feature. The reference site is drawn
in black.

B. Restriction and prolongation layers

The restriction layer (RL) can be written as the com-
position of a pooling layer (Pool) and a subsampling layer
(SubSample),

RL = SubSample � Pool . (6)

The pooling layer Pool: F' ! F', ' 7! Pool' is given
by

Pool'(x) =
X

q2Q

Wq(x)Tq'(x) . (7)

In the following we describe the elements of this equa-
tion in detail. The sum is over couples (i.e., two-tuples)
q = (p, Ū) that consist of a path p and a gauge field Ū .
A path p is defined as a sequence of hops without refer-
ence to a starting or end point. A set of paths P shall
be called “complete” if it connects every site in B(y) to
Br(y) exactly once. A complete set of paths therefore
always has |B(y)| elements, where |X| denotes the cardi-
nality of a set X. In the current work, we only consider
couples with |Q| = n|B(y)| and n 2 N+ such that n pre-
scriptions to construct the gauge field are combined with
n prescriptions to construct a complete set of paths.

The pooling layer is parametrized by weights Wq(x) 2
End(VḠ). In the context of the current paper the Wq(x)
are spin matrices.

Finally, the operator Tq for q = (p, Ū) is the parallel-
transport operator Tp : F' ! F', ' 7! Tp' defined in
Ref. [12] with gauge fields U replaced by Ū .1 The gauge
fields Ū entering Tp do not have to be the original fine-
grid gauge links U as long as they transform in the usual
way, i.e., as

Ūµ(x) ! ⌦(x)Ūµ(x)⌦†(x + µ̂) (8)

under gauge transformations ⌦. We will make use of this
freedom in this work.

1 In Eq. (7), Tq'(x) means that the field Tq' is evaluated at x.

▶ Gauge field Ū in Tp(Ū) needs to satisfy

Ūµ(x) → Ω(x)Ūµ(x)Ω
†(x + µ̂) . (5)

In practice, we use a variety of differently smeared links.

▶ Complete set of paths P transports every element of B(y) exactly once to Br (y)
⇒ |P| = |B(y)|

▶ Efficient implementation for each complete set of path possible: GPT

▶ ϕ̃ = RLϕ yields ϕ̃(y) → Ω̃(y)ϕ̃(y) under gauge transformations
ϕ(x) → Ω(x)ϕ(x)

37 / 48

Explicit gauge-equivariant coarse layers need coarse gauge field

▶ Plain coarse gauge field construction:

Br (y
′)− Br (y) = bµ̂

with unit vector µ̂ in direction µ and b ∈ N+. The coarse-grid gauge field Ũµ(y)
corresponding to this pair of reference points is then simply

Ũµ(y) = Uµ(Br (y)) · · ·Uµ(Br (y) + (b − 1)µ̂) . (6)

▶ Galerkin coarse gauge field construction:

Ũµ(y) = D̃(y , y + µ̂) (7)

with

D̃ = RL ◦ D ◦ PL (8)

for Wilson-clover D.

38 / 48

Spectrum of Wilson-clover Dirac operator
4

The second choice is based on the Galerkin coarse-grid
operator

D̃ = RL � D � PL (14)

with gauge-equivariant fine-grid operator D. For the pur-
pose of the current paper, D is the Wilson-clover Dirac
operator (for the precise definition see Ref. [12]). We
then simply define

Ũµ(y) = D̃(y, y + µ̂) , (15)

which transforms as in Eq. (11) since D̃(y, y0) transforms

to ⌦̃(y)D̃(y, y0)⌦̃†(y0) under gauge transformations ⌦.
We refer to this choice as the “Galerkin model.” Note
that in the Galerkin model the coarse gauge links will
depend on the weights in the RL and PL. In the Galerkin
model Ũµ(y) 2 End(ṼI), while Ũµ(y) 2 End(VG) in the
plain coarse-link model. Both are acceptable in the con-
text of the gauge-equivariant coarse-grid LPTC layer in
Fig. 2 as long as Eq. (11) is satisfied.

We again note that there is a rich history of related
work, see, e.g., Refs. [21, 38, 57–60]. As in these works,
our coarse gauge fields defined by Eq. (15) are, in gen-
eral, no longer elements of the original gauge group.
While this is not a problem of principle, Refs. [21, 27]
found better performance of the multigrid algorithm if
the coarse gauge fields are projected back to the original
gauge group. We plan to investigate this possibility in
future work. We also note that there is an alternative
way to define the coarse gauge fields using the pooling
and subsampling layers introduced in Sec. II B and ap-
plying them to the gauge links between the blocks, see,
e.g., Ref. [38]. We did not implement this alternative be-
cause it does not increase the expressivity of the model
compared to Eq. (15).

III. DIRAC SPECTRUM AND TOPOLOGY

As in Ref. [12], we have generated quenched Wilson
gauge configurations with 83 ⇥ 16 lattice sites for � = 6
and attempt to precondition the Dirac equation for the
Wilson-clover Dirac operator with csw = 1. In order to
provide an even more challenging setup for the precondi-
tioner models, we select gauge configurations with topo-
logical charge Q = 1 defined via the five-loop enhanced
definition of Ref. [61] after cooling the gauge fields by ap-
plying the Wilson flow [62] with flow time t = 10.3 The
Dirac operator has an eigenvalue with vanishing imagi-
nary part and real part very close to the lower edge of
the spectrum, see Fig. 3. In this case, we expect critical
slowing down to be clearly visible as the quark mass is
tuned to criticality.

3 The measured value for the configuration used in this work is
Q = 0.998.

�0.1 0.0 0.1 0.2 0.3 0.4

Re �

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

Im
�

FIG. 3. Smallest eigenvalues � of the Wilson-clover Dirac
operator with mass m = �0.5645 and csw = 1 on a pure-
Wilson-gauge configuration with topological charge Q = 1,
� = 6, and 83 ⇥ 16 lattice sites. The mass m is tuned to near
criticality for the experiments in this work.

IV. TRAINING STRATEGY

In the following we describe our training strategy for
the preconditioner model shown in Fig. 2. We perform
the training in two steps.

In the first step, we train only the restriction and pro-
longation layers. One may naturally consider to train
PL � RL as an autoencoder with training vectors sam-
pled from the low-mode space of D. We find that this
strategy by itself is not su�cient to obtain an e�cient
model. Instead, we also train PL �RL to act as a projec-
tor onto the low-mode space, i.e., it should project high
modes to zero. Furthermore, we found that it is benefi-
cial to approximately preserve the property RL�PL = 1.
We also found that restricting PL = RL† by using the
same couples q = (p, Ū) and the same weights Wq(x)
for the restriction and prolongation layers did not reduce
the performance of the model, and therefore we adopt
this choice for simplicity.

We implement this strategy by using the cost function

C = |PL � RLv` � v`|2 + |PL � RLvh � P`vh|2

+ |RL � PLvc � vc|2 (16)

with two fine-grid vectors v` and vh and one coarse-grid
vector vc. For each training step new random vectors
v`, vh, vc are chosen according to the following proce-
dure. For v` we select a random element of {u1, . . . , us}
of the near-null space vectors ui defined in Ref. [12] with
s 2 N+. For vh and vc we take random vectors with el-
ements normally distributed about zero. The low-mode

▶ β = 6 pure Wilson gauge field with topological charge Q = 1

▶ 83 × 16 lattice sites

▶ Wilson-clover operator with m = −0.5645 and csw = 1

39 / 48

Model details I

▶ Need prescription for q in

Poolϕ(x) =
∑
q∈Q

Wq(x)Tqϕ(x)

with q = (p, Ū), path p, gauge field Ū, and Tq = Tp(Ū).

▶ For fixed i , we define paths p(ij) that connect all elements of B(y), enumerated
by j = 1, . . . , |B(y)|, to the reference site Br (y). For different i we use different
prescriptions for the paths p(ij), and then use the couples qij = (p(ij), Ū(i)).

▶ We define four different prescriptions p̂1, . . . , p̂4 (depth first/breadth first
lexicographic/reverse lexicographic)

and set p(ij) = p̂
(j)
i mod 4.

40 / 48

Model details II

▶ Concretely, we use 9 different gauge fields Ū(i) with i = 1, . . . , 9. We construct
the Ū(i) by applying i(i − 1)/2 steps of ρ = 0.1 stout smearing to the

unsmeared gauge fields U. Smearing radius proportional to
√

i(i − 1).

▶ So we have 9 different spin-matrix fields W1(x), . . . ,W9(x).

▶ In practice, sufficient to use same weights in PL and RL such that PL = RL†.
Found no benefits from general case.

▶ Coarse-grid size 23 × 4

41 / 48

Training setup – How to train RL/PL?

▶ Obvious approach: train

PL ◦ RL (9)

as an autoencoder with training vectors from the near-null space.

▶ This could be done with a cost function

C = |PL ◦ RLvℓ − vℓ|2 (10)

with fine-grid vectors vℓ. For each training step we select a random element of
vℓ ∈ {u1, . . . , us} of the near-null space vectors ui defined above.

▶ Use Adam optimizer.

▶ Result: did not perform well in MG preconditioner!

42 / 48

Training setup – How to train RL/PL?

▶ What was missing: PL ◦ RL should also project high eigenmodes to zero (if not
could overload smoother layers)

▶ Found also additional benefit from encouraging RL ◦ PL = 1 such that we have
a proper projection operator P = PL ◦ RL with P2 = P.

▶ We implement this strategy by using the cost function

C = |PL ◦ RLvℓ − vℓ|2 + |PL ◦ RLvh − Pℓvh|2 + |RL ◦ PLvc − vc |2 (11)

with additional fine-grid vector vh and coarse-grid vector vc . For each training
step vh and vc are random vectors with elements normally distributed about
zero.
Pℓ is the blocked low-mode projector

Pℓ = W †W , W (y , x)† =
s∑

i=1

ūyi (x)ê
†
i (12)

with block-orthonormalized ūi from ui .

▶ All vectors vℓ, vh, and vc are normalized to unit length before being used in the
cost function.

43 / 48

Training setup – How to train RL/PL?

▶ In first paper s = 12, here s = 4 was sufficient.

▶ Training converged after O(1000) steps.

▶ Yields W1(x), . . . ,W9(x) but still costly since we first need near-null space
vectors.

▶ In future work: obtain Wi (x) as output of gauge-invariant models based on
energy density E(x), topology density Q(x), plaquette P(x) and other Wilson
loops. At this point the ui are no longer needed. (In a sense we generate
training data for the next step in this work.)

44 / 48

Training setup – combined preconditioner model

3

FIG. 2. The two-level multigrid model studied in this work. The model is similar to the one studied in Ref. [12], but explicitly
gauge-equivariant pooling and unpooling layers are used in the current work for the restriction and prolongation layers. The
coarse-grid layer is limited by the blue features. This layer and the last four layers are LPTC layers introduced in Ref. [12].

The subsampling layer SubSample: F' ! F'̃, ' 7!
SubSample' is defined by

SubSample'(y) = '(Br(y)) (9)

for a given choice of reference-point map Br defined in
Eq. (3). This construction therefore satisfies Eq. (4) with
'̃ = RL' for a given ' 2 F'. For a discussion of a general
group-equivariant pooling layer, see Ref. [54].

The prolongation layer (PL) is simply defined as

PL = Pool† � SubSample† , (10)

where the dagger of an operator O is defined in the usual

way by requiring '†
1O'2 = ('†

2O
†'1)

⇤ for arbitrary '1

and '2. Note that the couples and weights of a restric-
tion and prolongation layer can in principle be chosen
independently. The models studied in this work, how-
ever, use the same couples and weights for both RL and
PL so that PL = RL†.2

A graphical representation of the restriction and pro-
longation layers is given in Fig. 1. The pooling layer is
a generalization of the local parallel-transport convolu-
tion (LPTC) layer introduced in Ref. [12]. However, one
would typically implement the combined RL directly to
avoid unnecessary computation of feature elements that
will be discarded by the subsequent subsampling layer.
This can be done e�ciently by precomputing, for each
complete set of paths, a field S ! End(VG) that is used
in combination with a reduction operation within each
block. We provide such implementations of both RL and
PL in the Grid Python Toolkit (GPT) [56].

We note that the construction of similar restriction
and prolongation operations has a long history, see, e.g.,
[20, 25, 35].

2 In the context of a multigrid solver, Ref. [55] calls this the vari-
ational choice because it follows from a variational principle.

C. Coarsening of the gauge fields

In the current work, we preserve the general model
structure introduced in Ref. [12]. However, we replace
the restriction and prolongation layers with ones based
on gauge-equivariant pooling and unpooling layers, see
Fig. 2. This replacement introduces an explicit gauge
degree of freedom on the coarse grid so that the coarse-
grid layer can be constructed in an explicitly gauge-
equivariant manner. For this layer we need coarse gauge
fields Ũ .

The gauge transformation property of coarse fields
given in Eq. (4) is consistent with gauge fields on the
coarse grid that perform a parallel transport between ref-
erence sites Br(y) and Br(y

0) on the fine grid, where y
and y0 are neighboring sites on the coarse grid. Such
gauge fields must transform as

Ũµ(y) ! ⌦̃(y)Ũµ(y)⌦̃†(y + µ̂) (11)

under gauge transformations. We investigate two choices
for the Ũµ in this work.

The first choice is to connect Br(y) and Br(y
0) using

the shortest path on the fine grid connecting both points.
In this work, we use a block map B such that B(y) is
given by a Cartesian product of neighboring sites in each
dimension, and a fixed reference site Br within each block
so that the shortest path is unique and aligns with a
coordinate axis. We then always have

Br(y
0) � Br(y) = bµ̂ (12)

with unit vector µ̂ in direction µ and b 2 N+. The coarse-
grid gauge field Ũµ(y) corresponding to this pair of ref-
erence points is then simply

Ũµ(y) = Uµ(Br(y)) · · · Uµ(Br(y) + (b � 1)µ̂) (13)

with fine-grid gauge links Uµ. We will refer to this choice
as the “plain coarse-link model.”

▶ First train RL/PL as described above.

▶ Then train combined model with frozen RL/PL using cost function

C = |Mbh − uh|2 + |Mbℓ − uℓ|2 (13)

with bh = Dv1, uh = v1, bℓ = v2, and uℓ = D−1v2.

▶ Further training with unfrozen RL/PL leads to no notable improvement.

45 / 48

Results – critical slowing down

−0.564 −0.562 −0.560 −0.558

m

0

1000

2000

3000

4000

5000

It
er

a
ti

o
n

C
o
u

n
t

Unpreconditioned

Smoother-only model

Gauge-equivariant Galerkin model

▶ Show outer iteration count in GMRES to 10−8 precision with and without
model as preconditioner.

▶ Model with Galerkin gauge fields removes critical slowing down.

46 / 48

Results – critical slowing down

−0.564 −0.562 −0.560 −0.558

m

0

50

100

150

200

250

300

350

400

It
er

a
ti

o
n

C
o
u

n
t

Original multi-grid model

Gauge-equivariant plain coarse-link model

Gauge-equivariant Galerkin model

▶ Original multi-grid model also removes critical slowing down.

▶ Model with plain gauge fields shows small remnants of critical slowing down.

47 / 48

Summary and Outlook

▶ We now have an explicitly gauge-equivariant model on coarse and fine grid.

▶ The multigrid model removes critical slowing down when used as a
preconditioner.

▶ We factored the gauge degree of freedom in RL and PL and learned the
resulting spin-matrix weights.

▶ In future work, these spin-matrices will be outputs of gauge-invariant models
themselves, which then removes the typical setup cost.

▶ Complex hadronic correlation functions can be approximated by intermediate
approximations to propagators. However, it may be more efficient to use our
architectures to directly approximate the correlation functions for use in AMA.

▶ Good approximations of propagators may be also be useful in HMC and other
generative models.

▶ Investigate cases with more challenging spectrum (such as DWF).

48 / 48

