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Universality and Weak Universality



Phase Transitions and Universality

» Transitions between phases of ‘
matter are central to their f;’” o
microscopic understanding.

» Many physical systems show A o
identical behaviour of physical .mj i
ons . 4 °%
quantities (like order parameters, g o
susceptibilities, correlation “ .
functions, specific heats) close to a KR R

continuous phase transition.
Guggenheim (1945): Universality

.. .. in the gas-liquid transition of 8
» Liquid-gas transitions are the same

as magnetic transitions! different liquids.



Phase Transitions and Universality

» Wilson’s Renormalization Group
(1970) unveiled the connections
between phase transitions and
quantum field theories (QFTs).

» Demonstrated the existence of
fized points which govern the
low-energy behaviour of
QFTs/SFTs.

Flow diagram of QFTs with

. . . couplings: relevant operators move
» Conformal Field Theories typically

provide a description of physics
close to the critical points.

the theory away from a fixed point.



Critical Exponents

vV VvV Vv Y

Universality can be characterized by critical exponents:

(t = =% is a reduced co-ordinate, r is spatial distance)

Specific heat C ~ |t|~*

Order Parameter (OP) W ~ |T|_B
Susceptibility x ~ |t|~"

Correlation Length & ~ |t|~ "

Correlation function (¥(r)¥(0)) ~ r—(¢=2+n)

Not all exponents are independent: 2 —1 = 2.

Critical exponents are unique to spatial dimensions,
and the global symmetry breaking on either side of
the transition.

— Universality Classes.

2d Ising model

> x=0
> 3=1/8
> v =17/4
> v=1
> n=1/4



Weak Universality

» Symmetry of OP and dimensionality of the system does not uniquely
specify the effect of marginal operators on critical exponents.

> The eight-vertex model solved by Baxter (1971) has continuously
varying critical exponents.
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» Maps to the 2-layer Ising model:

=—J; Z 0;0; — J Z T = ?\Z 0;0;T;T;
(i)

() (1)



Weak Universality

>

Kadanoff and Wegner (1971) attributed this to the existence of a
marginal operator, and computed the critical exponents which
depend on A (g is a geometrical factor).

a=2Ag B=232 y=T(1—q\;v=1—gA n=1.

2>

% = 527 = % = %’ 1: same as the 2d Ising model.

Suzuki (1974): According to renormalized perturbation theory critical
exponents should be computed using renormalized Green’s function
Go(k, T) = (k% + & 2) !, where the T dependence enters through &.

Observed in many statistical mechanical and spin systems till date.
We report a first occurrence of this phenomena in pure gauge theories.
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Lattice Gauge Theories



Wilson U(1) LGT

» Wilson-Kogut-Susskind: Quantum rotors.

Wilson(PRD, 1974), Kogut-Susskind (PRD, 1975).
U=LY, Ul =L E=1*7
B, Ul = U: [E, Ul = —UT: [U, UT] =

> Zzz ww+z_$ZD(Um+U£)'

» States in flux E basis are labeled with
(quantized) angular momenta
|0>a|i1>>‘i2>)"'-

» Gauge fields act as off-diagonal operators:
Um)=m+1),--; Ul lm) =|m —1),---

» Gauge Invariance: [G,, H] = 0.

> G =5,(E,;— B, 1)

Zh!
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The U(1) Gauss Law

» G, generates local unitary trNansformations:
V =11, exp(—i0,G,),and H=V -H- V' =H.

» Fock space splits into superselection sectors with ¢, € Z for each z.

» Gauge invariant states:

H exp(—10, Gz) [b) =)

2 2

T

» Fora U(l) GT, 0<60, <2r, — G ) =0.

» Total flux coming into a site = total flux leaving the site: typically
used in particle physics contexts.



Breaking U (1) — Z, the Gauss Law

» Allow any even charge in the theory ¢, = 0,+2,+4, ---. This is
equivalent to modifying the Gauss’ Law condition to
G W) = ¢z W) = 2n, ), where n, are integers.

» What does this imply for the local gauge symmetry?

92 G2
$2$+---)|¢>=w>,

H<1—¢emG$—

2 2
H(l—i@z(2nz)—ez(22nx)+~">|ll)>_1b>)

HeXP(—i29z “ng) W) =) .

» 0, = {0, 7}, effectively a Z, gauge theory.



Quantum Link U (1) Gauge Theory

>

Preserve identical gauge invariance using finite dimensional Hilbert
space for single gauge links.

Horn (PLB, 1981), Orland-Rohrlich (NPB, 1990), Wiese-Chandrasekharan (NPB, 1997).
Quantum Rotors — Quantum Spins.

The three operators 5, U, U' can be represented by the generators of
a SU(2) algebra: E=8%, U=S8", Ul=85".

Satisfies [, U] = U; [E,U']=—-U".
[U, U'] = 2F extends the scenarios from those in Wilson-type LGTs.
Hamiltonian: H = g pIp Eg)wﬂ — 52> o(Un+ UE]).

Gauss’ Law: [G,, H] = 0.

Identical Gauss’ Law, Hamiltonian. Acts on different Hilbert space.



Quantum Links in (2 + 1)-d

Minimum spin representation S = % has a two-dimensional local
Hilbert space for gauge links.

Els—)= 3l U2 =0  Ullw—)=|—);
Bl ) =—3) Ul—) =l Ull—) =0;
H = —JZ(UD_‘_UE') H\f\ Y=0
O 4

PS
Y

+ A (Ug+ U
[m}

Y

A A
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Egy is a constant: drops in H, but

enters via Gj. Hy, Y A=AY A

Z ="Tr [e*BH]P’d; Pa = >
1

[1. 3(65(Go)+8(Go—2+5(Got2) gy _gigig g

zyMyzz

Y



Gauss’ Law for U(1) and Z, cases
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For the spin—% QLM: ¢, =0,+£1, +2.

For the 7Z, theory ¢, = +1 are not allowed.
Only six states satisfy the ¢, = 0, and two for ¢, = £2.
Temperature controls the density of the ¢, = £2.

Annealed disorder: impurities in thermal equilibirum.



Computational Methods
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» Cluster Algorithm for simulating the Kramers-Wanner dualized
version of the model.

DB, Jiang, Widmer, Wiese. J. Stat. Mech. (2013) P12010.
» Pure Gauge Theory in (2 + 1)-d maps to a height model in 3d.

» The computation is done on a Euclidean system with L x L x f3,
where the (3 is varied, and L — oo for thermodynamic limit.

» Two-component order parameter (M4, Mg) capture the ordering of
the two sublattices.



Competing orders at T'=10

H)y, ¥ < < =16\

Charges absent at T' = 0 and physics identical to U(1) theory.
Confined Phase 1: Both sublattices order, both sublattices flippable

Confined Phase 2: One sublattice orders, as resonating plaquettes.



Competing orders at T'=10

Charges absent at T' = 0 and physics identical to U(1) theory.
Confined Phase 1: Both sublattices order, both sublattices flippable

Confined Phase 2: One sublattice orders, as resonating plaquettes.



T = 0 Phase Diagram

(2, py) = (m,7); € =+
((vapy)>: ((g,g));g: _ ><
Pz, py) = (U,0);C =+ } ,
G~ —035905) © A= 1.0
RK point

> At A < A., Spontaneous Symmetry Breaking (SSB) of charge
conjugation C and lattice translation T, Ty.

> At A > A., SSB of lattice translation symmetry Ty, Ty.

» At A~ A, emergent SO(2) symmetry with a pseudo-Goldstone boson.
Weak first order phase transition.

DB, Jiang, Widmer, Wiese. J. Stat. Mech. (2013) P12010.



T = 0 Phase Diagram

T
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> At A < A., Spontaneous Symmetry Breaking (SSB) of charge
conjugation C and lattice translation T, Ty.

> At A > A, SSB of lattice translation symmetry Ty, Ty.

> At A ~ A, emergent SO(2) symmetry with a pseudo-Goldstone boson.
Weak first order phase transition.

DB, Jiang, Widmer, Wiese. J. Stat. Mech. (2013) P12010.
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Confinement Deconfinement Transition



Global Center Symmetry

» Use the action formulation: consider the U(1) theory first.

"ﬁ[eﬁHHzS(G) [BHJHdAO el ]

where Ag(Z) — Lagrange multiplier for imposing the Gauss Law.

» Use transfer matrix formulation and gauge transformations to convert
it to the action formulation:

- JH dUz,ue_BW ZD(UD-,—UE'))
T,

’LAO

where U, o = is the temporal gauge link.

> UD v = eid)z‘ﬁ 0 ei¢‘z+ﬁ,9 0 e*i¢‘z+0,ﬁ 0 e*id):ﬁ?
)



Global Center Symmetry

» Plaquette action invariant under:
Uz(Z, z;) = 2Uz(Z, ), 2z is the
center of the gauge group.

— z € U(1) for a U(1) LGT,
— 2z € Zy for a Zy LGT.

A

A

» Winding Loops transform non-trivially under center symmetry.
Polyakov loop: L = Hi’;gl U.(Z,z;); L— z-L.

» (L) =0, at small T; while (L) 0 at high T.

» Spontaneous breaking of center symmetry conventionally identified
with the confinement-deconfinement transition.

» (My, Mg) tracks the center symmetry, and can be measured very
accurately via improved estimators — cluster sizes.



Svetitsky-Yaffe Conjecture (1982)

>

L, and its fluctuations can be used to construct the free energy
around the critical point (Landau-Ginzburg approach).

Confined spatial directions: no long range correlations.

EFT for the LGT in (d + 1)-dim is a spin model with short range
couplings in d-dim.

Spins transform under the same symmetry as the center group.

Using RG, relate the critical phenomena (if any) at the finite-T
confinement-deconfinement transition to the critical phenomena of an
appropriate spin model.

Examples in (2 + 1)-d:
Z5 LGT — same critical exponents as the 2d Ising model,
U(1) LGT — BKT phase transition as the 2d XY model.



Effect of the Charges ¢, = +2
U(1) LGT with g, = 2 cause deviations from the usual Z, LGT.

0.6 S — Lr=24
' ‘/\ LL 4‘ 0.30 ‘ ! ‘
0.5 T A=-1L=64
o — ED (W) 02 I A=-1L=128
04 —ED (%) ZiT A= —09L-64
: % QMmC :z r)n 0.20 T A= —0.8L-64
.3 QMC (2 <
Lo Soa
0.2 110
0.1 0.05
0.0 0.00 W
025 050 075 100 125 150 06 08 10 12
s B

» Energetically, mass gap of the charges M ~ AJ.

Theory confining at 7" = 0, charges do not play a role.

At temperatures for 7' ~ AJ ~ M, charges become relevant.
At T — o0, (@Q%) — L.

For T ~ T., (Q?%) ~exp(—al\|/T).
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Results for Weak Universality



Finite Temperature Phase Diagram

~

Confined C1 \ Confined CQ\Staggered

Ae 0 1 )\

» Scans in (3 for L; =4,---,24 for AJ = —1.0,—0.9,—0.8.
» Different L; necessary for continuum limit (in progress).

» Most results will be on the finest lattice L; = 24a; F'SS on spatial
lattices upto L = 512a.



Magnetization, Susceptibilities, Binder Ratios
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» Magnetization My = LiT Zin%{hf, where, X = A, B.
» Susceptibility

1
Xtot = V <M2>) Xconn = V Z MX |MX|> )

where M2 = ZX:A‘B(M}%), V =17 and p = eLry.

» Three different Binder cumulants to estimate the critical exponents:

2 4
1Z<|MX|> ; Q2a:2*7<M>'Q2b:2

Q1:§ ~ <M)2(> ) <M2>2)




Charges change the critical behaviour

» Following the SY conjecture: the U(1) LGT shows a BKT transition.

» The presence of g, = +2 changes the critical behaviour radically.



Estimating the critical coupling

Xt L

» Crossing points of ¥t - L, Q1, Qsa, Qap to estimate T, = 1/B.
: _7
> Fix *

= 1, value for 2d Ising model.

> All observables give consistent estimates of 3, for L > 100a.



Precision of estimations

Lo | Be \ n | v(Q1) [ v(@2a) [ v(Q2)
A=—10

24 [ 0.814279(14) | 0.2472(9) | 1.35(2) | 1.38(1) | 1.38(2)

16 || 0.813783(15) | 0.2479(9) | 1.32(4) | 1.34(2) | 1.34(4)

8 || 0.811129(14) | 0.2489(8) | 1.33(3) | 1.31(2) | 1.34(3)

4 | 0.801059(12) | 0.2509(8) | 1.29(1) | 1.31(1) | 1.29(2)

2 || 0.767685(10) | 0.2497(7) | 1.19(1) | 1.20(1) | 1.20(1)
A=-09

24 [ 0.885292(17) | 0.2550 (18) | 1.45(3) | 1.47(4) | 1.45(3)
A=-0.8

24 [ 0.968196(26) | 0.2511 (10) | 1.64(9) | 1.68(4) | 1.64(8)

Table: HEstimates of 3., , v for different values of L, A.
For 2d Ising, n = %, and v = 1.0.



Esstimating the critical exponent 1

—+— =64

10°

; //(4/!/
Xmax (L)

10°

R
—_,—

074 076 078 080 082 084 0.0030 0.0100  0.0160 0.0225 0.0300

» Scaling of the peak of Xconn to compute n:
Xconn,max(L) =b- LY/V - bszT]; XQ/DOF ~ 1.3.

» Extracted from three different bare couplings, A.

. . . _ 7
» Independent validation of the assumption ¥ = 7.

2000

1000



Weak Universality: floating v
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» For a dimensionless phenomenological coupling R(f3, L):
OR(L) _ aLl/V(l + bL )
B

of
» Slope of log-log plot of the derivative vs lattice size gives 1/v.

c

» Precise estimate of 3. essential.

» Consistent values of v obtained from @, @24, @2p, all > 1.



Scaling Collapse of x¢o¢

Xiot Vs 3 for Ly = 24

0.76 0.78 0.80

Consistent estimates of the critical exponents are also obtained from

scaling collapse.
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Scaling Collapse of @

@Q-scaling collapse (Lt=24)
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Consistent estimates of the critical exponents are also obtained from

scaling collapse.



Scaling Collapse of (),

Scaling collapse of (y, (L; = 24)
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Consistent estimates of the critical exponents are also obtained from

scaling collapse.



Scaling Collapse of Q)

Scaling collapse of Qu, (L = 24)
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Consistent estimates of the critical exponents are also obtained from

scaling collapse.
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Outlook

» Svetitsky-Yaffe conjecture has played a central role in understanding
confinement-deconfinement transitions in gauge theories.

» Marginally relevant operators have interesting physics, can induce
weak universality.

» We provide an example of this phenomenon from the gauge theory
side, thereby validating the conjecture also for exotic scenarios.

» Analytic expression for the marginal operator in the EFT?

» Explore the thermal phase diagram for more negative A to the Ising
limit.

» Critical region around the tricritical point where three phases meet.

» Similar studies for Wilson-type gauge theories could be informative.

Stay tuned! Thank you for your attention!
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