Weak Universality in Lattice Gauge Theories and Spin Systems

Debasish Banerjee

HU+DESY Lattice Seminars

May 22, 2023 Saha Institute of Nuclear Physics, Kolkata, India

Work done with

(a) Indrajit Sau, IACS, Kolkata

(b) Arnab Sen IACS, Kolkata

Based on:

Sau, Sen, DB; Phys. Rev. Lett. 130, 071901 (2022).

▶ Sau, Sen, DB (in preparation).

Outline

Universality and Weak Universality

Lattice Gauge Theories

Confinement Deconfinement Transition

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Results for Weak Universality

Conclusion

Outline

Universality and Weak Universality

Lattice Gauge Theories

Confinement Deconfinement Transition

Results for Weak Universality

Conclusion

<ロト < 部ト < 言ト < 言ト 言 のへで 4/38

Phase Transitions and Universality

- Transitions between phases of matter are central to their microscopic understanding.
- Many physical systems show identical behaviour of physical quantities (like order parameters, susceptibilities, correlation functions, specific heats) close to a *continuous* phase transition.
- Liquid-gas transitions are the same as magnetic transitions!

Guggenheim (1945): Universality in the gas-liquid transition of 8 different liquids.

Phase Transitions and Universality

- Wilson's Renormalization Group (1970) unveiled the connections between phase transitions and quantum field theories (QFTs).
- Demonstrated the existence of fixed points which govern the low-energy behaviour of QFTs/SFTs.
- Conformal Field Theories typically provide a description of physics close to the critical points.

Flow diagram of QFTs with couplings: relevant operators move the theory away from a fixed point.

Critical Exponents

Universality can be characterized by critical exponents: $(\tau = \frac{T-T_c}{T_c}$ is a reduced co-ordinate, r is spatial distance)

- Specific heat $C \sim |\tau|^{-\alpha}$
- Order Parameter (OP) $\Psi \sim |\tau|^{-\beta}$
- Susceptibility $\chi \sim |\tau|^{-\gamma}$
- Correlation Length $\xi \sim |\tau|^{-\nu}$
- Correlation function $\langle \Psi(r)\Psi(0)\rangle \sim r^{-(d-2+\eta)}$

Not all exponents are independent: $2 - \eta = \frac{\gamma}{\gamma}$.

Critical exponents are unique to spatial dimensions, and the global symmetry breaking on either side of the transition.

 \longrightarrow Universality Classes.

2d Ising model

- $\blacktriangleright \alpha = 0$
- ► $\beta = 1/8$
- \triangleright $\gamma = 7/4$
- \blacktriangleright $\nu = 1$
- ► $\eta = 1/4$

Weak Universality

- Symmetry of OP and dimensionality of the system does not uniquely specify the effect of marginal operators on critical exponents.
- The eight-vertex model solved by Baxter (1971) has continuously varying critical exponents.

Maps to the 2-layer Ising model:

$$H = -J_1 \sum_{\langle ij \rangle} \sigma_i \sigma_j - J_2 \sum_{\langle ij \rangle} \tau_i \tau_j - \lambda \sum_{\langle ij \rangle} \sigma_i \sigma_j \tau_i \tau_j$$

Weak Universality

Kadanoff and Wegner (1971) attributed this to the existence of a marginal operator, and computed the critical exponents which depend on λ (q is a geometrical factor).

•
$$\frac{\beta}{\nu} = \frac{1}{8} = \frac{\beta_0}{\nu_0}; \quad \frac{\gamma}{\nu} = \frac{7}{4} = \frac{\gamma_0}{\nu_0}, \eta:$$
 same as the 2d Ising model.

- Suzuki (1974): According to renormalized perturbation theory critical exponents should be computed using renormalized Green's function $G_0(k, T) = (k^2 + \xi^{-2})^{-1}$, where the T dependence enters through ξ .
- Observed in many statistical mechanical and spin systems till date.
 We report a first occurrence of this phenomena in pure gauge theories.

Outline

Universality and Weak Universality

Lattice Gauge Theories

Confinement Deconfinement Transition

Results for Weak Universality

Conclusion

◆□ → ◆母 → ◆ 注 → ◆ 注 → ○ へ ○ 10/38

Wilson U(1) LGT

▶ Wilson-Kogut-Susskind: Quantum rotors.
 Wilson(PRD, 1974), Kogut-Susskind (PRD, 1975).
 U = L⁺; U[†] = L⁻; E = L^z
 [E, U] = U; [E, U[†]] = −U[†]; [U, U[†]] = 0

$$\blacktriangleright H = \frac{e^2}{2} \sum_{x,i} E_{x,x+i}^2 - \frac{1}{2e^2} \sum_{\square} (U_{\square} + U_{\square}^{\dagger}).$$

- States in flux E basis are labeled with (quantized) angular momenta
 |0>, |±1>, |±2>, ···.
- ► Gauge fields act as off-diagonal operators: $U |m\rangle = |m+1\rangle, \dots; U^{\dagger} |m\rangle = |m-1\rangle, \dots.$
- Gauge Invariance: $[G_x, H] = 0$.

$$\blacktriangleright \quad G_x = \sum_i (E_{x,\hat{i}} - E_{x-\hat{i},\hat{i}})$$

 $E_y+E_w-E_x-E_z=Q.$

The U(1) Gauss Law

- G_x generates local unitary transformations: $V = \prod_x \exp(-i\theta_x G_x)$, and $\widetilde{H} = V \cdot H \cdot V^{\dagger} = H$.
- Fock space splits into superselection sectors with $q_x \in \mathbb{Z}$ for each x.
- Gauge invariant states:

$$\prod_x \exp(-i heta_x G_x) \ket{\psi} = \ket{\psi};$$
 $\prod_x \left(1 - i heta_x G_x - rac{ heta_x^2 G_x^2}{2} + \cdots\right) \ket{\psi} = \ket{\psi}.$

For a U(1) GT, $0 \leq \theta_x < 2\pi$, $\longrightarrow G_x |\psi\rangle = 0$.

Total flux coming into a site = total flux leaving the site: typically used in particle physics contexts.

Breaking $U(1) \rightarrow \mathbb{Z}_2$ the Gauss Law

- Allow any even charge in the theory $q_x = 0, \pm 2, \pm 4, \cdots$. This is equivalent to modifying the Gauss' Law condition to $G_x |\psi\rangle = q_x |\psi\rangle = 2n_x |\psi\rangle$, where n_x are integers.
- What does this imply for the local gauge symmetry?

$$\begin{split} \prod_{x} \left(1 - i\theta_x G_x - \frac{\theta_x^2 G_x^2}{2} + \cdots \right) \left| \psi \right\rangle &= \left| \psi \right\rangle, \\ \prod_{x} \left(1 - i\theta_x (2n_x) - \frac{\theta_x^2 (2n_x)^2}{2} + \cdots \right) \left| \psi \right\rangle &= \left| \psi \right\rangle, \\ \prod_{x} \exp(-i2\theta_x \cdot n_x) \left| \psi \right\rangle &= \left| \psi \right\rangle. \end{split}$$

• $\theta_x = \{0, \pi\}$, effectively a \mathbb{Z}_2 gauge theory.

Quantum Link U(1) Gauge Theory

Preserve identical gauge invariance using finite dimensional Hilbert space for single gauge links.

Horn (PLB, 1981), Orland-Rohrlich (NPB, 1990), Wiese-Chandrasekharan (NPB, 1997).

- $\blacktriangleright \quad Quantum \ Rotors \longrightarrow Quantum \ Spins.$
- ► The three operators E, U, U[†] can be represented by the generators of a SU(2) algebra: E = S^z, U = S⁺, U[†] = S⁻.
- Satisfies [E, U] = U; $[E, U^{\dagger}] = -U^{\dagger}.$
- ▶ $[U, U^{\dagger}] = 2E$ extends the scenarios from those in Wilson-type LGTs.
- ► Hamiltonian: $H = \frac{e^2}{2} \sum_{x,i} E_{x,x+i}^2 \frac{1}{2e^2} \sum_{\Box} (U_{\Box} + U_{\Box}^{\dagger}).$
- Gauss' Law: $[G_x, H] = 0$.
- Identical Gauss' Law, Hamiltonian. Acts on different Hilbert space.

Quantum Links in (2+1)-d

Minimum spin representation $S = \frac{1}{2}$ has a two-dimensional local Hilbert space for gauge links.

$$\begin{split} E| \rightarrow \rightarrow \rangle &= \frac{1}{2} | \rightarrow \rightarrow \rangle; \quad U| \rightarrow \rightarrow = 0; \qquad U^{\dagger} | \rightarrow \rightarrow \rangle = | \rightarrow \rightarrow \rangle; \\ E| \rightarrow \rightarrow \rangle &= -\frac{1}{2} | \rightarrow \rightarrow \rangle; \quad U| \rightarrow \rightarrow = | \rightarrow \rightarrow \rangle; \quad U^{\dagger} | \rightarrow \rightarrow \rangle = 0; \end{split}$$

$$\begin{split} \mathbf{H} &= -J\sum_{\Box}\left(U_{\Box}+U_{\Box}^{\dagger}\right) \\ &+ \lambda J\sum_{\Box}\left(U_{\Box}+U_{\Box}^{\dagger}\right)^{2} \end{split}$$

$$\begin{split} & \mathbb{E}_{xy}^2 \text{ is a constant: drops in H, but} \\ & \text{enters via } G_x. \\ & Z = \mathrm{Tr} \; \left[\mathrm{e}^{-\beta \mathrm{H}} \mathbb{P}_{\mathbb{G}} \right]; \; \mathbb{P}_G = \\ & \prod_x \frac{1}{8} \{ \delta(G_x) + \delta(G_x - 2) + \delta(G_x + 2) \} \end{split}$$

Gauss' Law for U(1) and \mathbb{Z}_2 cases

• For the spin- $\frac{1}{2}$ QLM: $q_x = 0, \pm 1, \pm 2$.

- For the \mathbb{Z}_2 theory $q_x = \pm 1$ are not allowed.
- Only six states satisfy the $q_x = 0$, and two for $q_x = \pm 2$.
- Temperature controls the density of the $q_x = \pm 2$.
- Annealed disorder: impurities in thermal equilibirum.

Computational Methods

 Cluster Algorithm for simulating the Kramers-Wanner dualized version of the model.

DB, Jiang, Widmer, Wiese. J. Stat. Mech. (2013) P12010.

- ▶ Pure Gauge Theory in (2+1)-d maps to a height model in 3d.
- The computation is done on a Euclidean system with $L \times L \times \beta$, where the β is varied, and $L \to \infty$ for thermodynamic limit.
- Two-component order parameter (M_A, M_B) capture the ordering of the two sublattices.

Competing orders at T = 0

Charges absent at T = 0 and physics identical to U(1) theory. Confined Phase 1: Both sublattices order, both sublattices flippable Confined Phase 2: One sublattice orders, as resonating plaquettes.

Competing orders at T = 0

Charges absent at T = 0 and physics identical to U(1) theory. Confined Phase 1: Both sublattices order, both sublattices flippable Confined Phase 2: One sublattice orders, as resonating plaquettes.

T = 0 Phase Diagram

- At λ < λ_c, Spontaneous Symmetry Breaking (SSB) of charge conjugation C and lattice translation T_x, T_y.
- At $\lambda > \lambda_c$, SSB of lattice translation symmetry T_x , T_y .
- At $\lambda \sim \lambda_c$, emergent SO(2) symmetry with a pseudo-Goldstone boson. Weak first order phase transition.

DB, Jiang, Widmer, Wiese. J. Stat. Mech. (2013) P12010.

T = 0 Phase Diagram

- At λ < λ_c, Spontaneous Symmetry Breaking (SSB) of charge conjugation C and lattice translation T_x, T_y.
- At $\lambda > \lambda_c$, SSB of lattice translation symmetry T_x , T_y .
- At λ ~ λ_c, emergent SO(2) symmetry with a pseudo-Goldstone boson.
 Weak first order phase transition.

Outline

Universality and Weak Universality

Lattice Gauge Theories

Confinement Deconfinement Transition

Results for Weak Universality

Conclusion

<ロ> < 母 > < 臣 > < 臣 > 臣 の < で 20/38

Global Center Symmetry

• Use the action formulation: consider the U(1) theory first.

$$Z = \mathrm{Tr}\left[\mathrm{e}^{-eta H}\prod_{ec{x}}\delta(G_{ec{x}})
ight] = \mathrm{Tr}\left[\mathrm{e}^{-eta H}\int\prod_{ec{x}}dA_0(ec{x})\mathrm{e}^{iA_0(ec{x})\,G_{ec{x}}}
ight],$$

where $A_0(\vec{x}) \rightarrow \text{Lagrange multiplier for imposing the Gauss Law}$.

Use transfer matrix formulation and gauge transformations to convert it to the action formulation:

$$Z = \int \prod_{x,\mu} dU_{x,\mu} \mathrm{e}^{-\beta_{\mathrm{W}} \sum_{\Box} (U_{\Box} + U_{\Box}^{\dagger})},$$

where $U_{x,0} = e^{-iA_0(x)}$ is the temporal gauge link.

Global Center Symmetry

- Plaquette action invariant under: U_{τ̂}(x̄, x_τ) = zU_{τ̂}(x̄, x_τ), z is the center of the gauge group. → z ∈ U(1) for a U(1) LGT, → z ∈ Z₂ for a Z₂ LGT.
- ▶ Winding Loops transform non-trivially under center symmetry. Polyakov loop: $L = \prod_{\tau=0}^{L_{\tau}-1} U_{\tau}(\vec{x}, x_{\tau}); \quad L \to z \cdot L.$
- $\langle L \rangle = 0$, at small T; while $\langle L \rangle \neq 0$ at high T.
- Spontaneous breaking of center symmetry conventionally identified with the confinement-deconfinement transition.
- (M_A, M_B) tracks the center symmetry, and can be measured very accurately via improved estimators \rightarrow cluster sizes.

Svetitsky-Yaffe Conjecture (1982)

- L, and its fluctuations can be used to construct the free energy around the critical point (Landau-Ginzburg approach).
- Confined spatial directions: no long range correlations.
- ▶ EFT for the LGT in (d + 1)-dim is a spin model with short range couplings in *d*-dim.
- Spins transform under the same symmetry as the center group.
- Using RG, relate the critical phenomena (if any) at the finite-T confinement-deconfinement transition to the critical phenomena of an appropriate spin model.
- Examples in (2 + 1)-d:
 Z₂ LGT → same critical exponents as the 2d Ising model,
 U(1) LGT → BKT phase transition as the 2d XY model.

Effect of the Charges $q_x = \pm 2$ U(1) LGT with $q_x = \pm 2$ cause deviations from the usual \mathbb{Z}_2 LGT.

- Energetically, mass gap of the charges $M \sim \lambda J$.
- Theory confining at T = 0, charges do not play a role.
- At temperatures for $T \sim \lambda J \sim M$, charges become relevant.
- At $T \to \infty$, $\langle Q^2 \rangle \to 1$.
- For $T \sim T_c$, $\langle Q^2 \rangle \sim \exp(-a|\lambda|/T)$.

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > の へ ?? 24/38

Outline

Universality and Weak Universality

Lattice Gauge Theories

Confinement Deconfinement Transition

Results for Weak Universality

Conclusion

Finite Temperature Phase Diagram

• Scans in β for $L_t = 4, \dots, 24$ for $\lambda J = -1.0, -0.9, -0.8$.

▶ Different L_t necessary for continuum limit (in progress).

Most results will be on the finest lattice L_t = 24a; FSS on spatial lattices up to L = 512a.

Magnetization, Susceptibilities, Binder Ratios

• Magnetization $M_X = \frac{1}{L_T} \sum_{\tilde{x}} \eta_{\tilde{x}}^X h_{\tilde{x}}^X$, where, X = A, B.

Susceptibility

$$\chi_{ ext{tot}} = rac{1}{V} \left\langle M^2
ight
angle, \; \chi_{ ext{conn}} = rac{eta}{V} \sum_X (\left\langle M_X^2
ight
angle - \left\langle \left| M_X
ight|
ight
angle^2),$$

where $M^2 = \sum_{X=A,B} (M_X^2)$, $V = L^2$, and $\beta = \epsilon L_T$.

► Three different Binder cumulants to estimate the critical exponents: $Q_{1} = \frac{1}{2} \sum_{X} \frac{\langle |M_{X}| \rangle^{2}}{\langle M_{X}^{2} \rangle}; \quad Q_{2a} = 2 - \frac{\langle M^{4} \rangle}{\langle M^{2} \rangle^{2}}; \quad Q_{2b} = \frac{3}{2} - \frac{1}{4} \sum_{X} \frac{\langle M_{X}^{4} \rangle}{\langle M_{X}^{2} \rangle^{2}}.$

27/38

Charges change the critical behaviour

▶ Following the SY conjecture: the U(1) LGT shows a BKT transition.

• The presence of $q_x = \pm 2$ changes the critical behaviour radically.

Estimating the critical coupling

- Crossing points of $\chi_{tot} \cdot L^{-\frac{\gamma}{\nu}}, Q_1, Q_{2a}, Q_{2b}$ to estimate $T_c = 1/\beta_c$.
- Fix $\frac{\gamma}{\gamma} = \frac{7}{4}$, value for 2d Ising model.
- ► All observables give consistent estimates of β_c for L > 100a.

Precision of estimations

L_T	β _c	η	$\nu(Q_1)$	$\nu(Q_{2a})$	$\mathbf{v}(Q_{2b})$
$\lambda = -1.0$					
24	0.814279(14)	0.2472(9)	1.35(2)	1.38(1)	1.38(2)
16	0.813783(15)	0.2479(9)	1.32(4)	1.34(2)	1.34(4)
8	0.811129(14)	0.2489(8)	1.33(3)	1.31(2)	1.34(3)
4	0.801059(12)	0.2509(8)	1.29(1)	1.31(1)	1.29(2)
2	0.767685(10)	0.2497(7)	1.19(1)	1.20(1)	1.20(1)
$\lambda = -0.9$					
24	0.885292(17)	0.2550 (18)	1.45(3)	1.47(4)	1.45(3)
$\lambda = -0.8$					
24	0.968196(26)	0.2511 (10)	1.64(9)	1.68(4)	1.64(8)

Table: Estimates of β_c , η , ν for different values of L_T , λ . For 2d Ising, $\eta = \frac{1}{4}$, and $\nu = 1.0$.

Estimating the critical exponent $\boldsymbol{\eta}$

- Scaling of the peak of χ_{conn} to compute η : $\chi_{\text{conn,max}}(L) = b \cdot L^{\gamma/\nu} = bL^{2-\eta}; \quad \chi^2/DOF \sim 1.3.$
- Extracted from three different bare couplings, λ.
- Independent validation of the assumption $\frac{\gamma}{\gamma} = \frac{7}{4}$.

Weak Universality: floating v

► For a dimensionless phenomenological coupling $R(\beta, L)$: $\frac{\partial R(L)}{\partial \beta}\Big|_{\beta_c} = aL^{1/\nu}(1 + bL^{-\omega})$

Slope of log-log plot of the derivative vs lattice size gives 1/v.

- Precise estimate of β_c essential.
- ► Consistent values of \mathbf{v} obtained from Q_1, Q_{2a}, Q_{2b} , all > 1.

Scaling Collapse of χ_{tot}

Consistent estimates of the critical exponents are also obtained from scaling collapse.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Scaling Collapse of Q_1

Consistent estimates of the critical exponents are also obtained from scaling collapse.

Scaling Collapse of Q_{2a}

Consistent estimates of the critical exponents are also obtained from scaling collapse.

Scaling Collapse of Q_{2b}

Consistent estimates of the critical exponents are also obtained from scaling collapse.

Outline

Universality and Weak Universality

Lattice Gauge Theories

Confinement Deconfinement Transition

Results for Weak Universality

Conclusion

Outlook

- Svetitsky-Yaffe conjecture has played a central role in understanding confinement-deconfinement transitions in gauge theories.
- Marginally relevant operators have interesting physics, can induce weak universality.
- We provide an example of this phenomenon from the gauge theory side, thereby validating the conjecture also for exotic scenarios.
- ▶ Analytic expression for the marginal operator in the EFT?
- Explore the thermal phase diagram for more negative λ to the Ising limit.
- ▶ Critical region around the tricritical point where three phases meet.
- Similar studies for Wilson-type gauge theories could be informative.

Stay tuned! Thank you for your attention!