

ATLAS Upgrade

Daniel Muenstermann

Daniel Muenstermann | 4th Helmholtz Alliance Detector Workshop | March 16th, 2011

Why Upgrades?

- LHC has a design luminosity of 10³⁴ cm⁻² s⁻¹ and shall collect 730 fb⁻¹
- With unprecedented energy and luminosity, LHC is a 'discovery machine' for the Higgs, SUSY-particles, ...
- After each discovery, measurements with more statistics must follow...
 - Why not use a well-understood detector and the existing collider?
- Higher statistics needs 'long²' at constant luminosity
 - → more luminosity
 - → sLHC/HL-LHC

Updated LHC schedule

- IE	2010	2011	2012	2013	2014	2015	2016
U.		WAW1148080			A M J J A 8 0 5 5 1 9		F M A M 7 I A 3
				154			
				Machine: Splice Consolidation & Collimation in IR3		a citere	
				ALICE - detector completion		dinte	
				ATLAS - Consolidation and new forward beam pipes	the second se	m setter X	
				CMS - FWD muons upgrade = Consolidation & infrastrastructure			
				UHCb - consolidations			
				7Cryo-collimation point			
rs 📘				Rented and an and a second			
		519	upgrade	7 SPS - UNACI connection & 7PSB energy	yupgrade		

2016	2017	2018	2019	2020	2021
IFMANIJASONO	J P M A M I J A S D N D	J P M A M I J A S D N D		1 P V A M 1 1 A 5 0 N D	I F M A M I I A 5 G N

Machine: Colling tion & prepare for moleculities & RF men system		Machine - maintenance &
	- E	ATLAS - New inner detector
ATLAS: nvi pixel defect defect. for ultimate lumino sty.	brund	ADCE - Second vertex detector upgrade
ALICE - Inner vertes system	2 II.	CMS - New Tracker
CMS - New Pixel, Mean HCAL Photodetectors, Completion of FWD masses upgrade	L'HR	
LHCb - full trigger upgrade, new vertex detector etc.		

ATLAS Upgrade

PSI, energy apgrade

CERN

Upgrading: step by step...

Daniel Muenstermann | 4th Helmholtz Alliance Detector Workshop | March 16th, 2011

How could sLHC fluences be reached?

- Accelerator-wise, there are several ways to reach luminosities beyond 10³⁴ cm⁻² s⁻¹
- Most favoured by the experiments: Full Crab Crossing (FCC) with 25 ns bunch spacing
 - no changes of the 40 MHz collision frequency
 - still up to 300 pile-up events per bunch crossing!
- Luminosity levelling might reduce this number to around 100 pile-up events per bunch crossing
- Consequences:
 - ➔ higher data rates
 - ➔ higher occupancy
 - → more radiation damage
- Detector upgrades are necessary due to all items:
 - improved TDAQ
 - finer granularity to limit occupancy
 - more rad-hard sensors and electronics

Fluences at sLHC

- integrated luminosity for sLHC: 3000 fb⁻¹
- including a safety factor of 2 to account for all uncertainties this yields the following fluences:
 - 2 · 10¹⁶ n_{eq} cm⁻² at 3.7 cm radius
 - up to 10¹⁵ n_{eq} cm⁻² at 30 cm radius
 - > 10¹⁴ n_{eq} cm⁻² at the outer tracker radius

Longstrips

Shortstrips

Pixels «

R(cm)

100

80

60

40

20

0

50

100

150

IAN DAWSON, VALENCIA TRACKER UPGRADE WS 11/2007

250

200

300

350

400

Z(cm)

Upgrade

S S

Current ATLAS Tracker...

2.1m<

Barrel semiconductor tracker Pixel detectors Barrel transition radiation tracker End-cap transition radiation tracker End-cap semiconductor tracker

What/How/When to upgrade?

- Main challenges:
 - occupancy
 - radiation damage
 - data rate/trigger rate
- Components needing upgrades:
 - TRT
 - occupancy-limited beyond about 2 · 10³⁴ cm⁻² s⁻¹
 - \rightarrow replace by all-silicon inner tracker
 - SCT
 - radiation damage limited (p-in-n sensors collect holes → n-in-p to collect e⁻)
 - occupancy limited (long strips → replace inner layers by short strips)
 - Pixel
 - radiation damage limited (?) for innermost layers → sensor R&D
 - data rate limited (inefficiency expected in b-layer above 3⁻¹0³⁴ cm⁻² s⁻¹)
 - → replace with new readout chip
 - Current tracker able to cope with "ultimate" LHC, but requires complete replacement for sLHC
 - Upgrades leading to physics improvements could be done before!

Upgrading: ATLAS

Daniel Muenstermann | 4th Helmholtz Alliance Detector Workshop | March 16th, 2011

Anticipating failures: the nSQP project

- The Service Quarter Panels are located adjacent to the pixel detector and house the so-called Optoboards where the transition from LVDS
 - to optical data transmission is made
- VCSEL lasers identical to those used in the Optoboards exhibited series failures in off-detector positions
 - multiple causes assumed: humidity, ESD, …
 - up to now no on-detector (Optoboard) failures!

- Optoboards are currently in an position inacessible during maintenance shutdowns
 - move them outside of the ID endplate
 - bridge the distance by LVDS
- new Service Quarter Panel project
 - replace Optoboards by E-boards
 - qualify rad-hard LVDS driver ICs
 - re-build Service Quarter Panels as there will be no time to recycle the old structures and cables

Daniel Muenstermann | 4th Helmholtz Alliance Detector Workshop | March 16th, 2011

A 4th pixel layer: IBL

- Idea:
 - exchange beampipe with thinner one
 - use additional space for a 4th pixel layer: Insertable B-Layer (IBL)
- The IBL fulfills several functions:
 - improved determination of secondary vertices → better b-tagging
 - 'hot spare' stand-in for a possibly deteriorating b-layer
 - 4^{th} pixel hit \rightarrow improved tracking cuts
- (New) timescale: be ready for installation in 2013

IBL Sensor qualification

- IBL requirements:
 - qualification fluence: 5 · 10¹⁵ n_{eq} cm⁻²
 - qualification dose: 200 MRad
- Due to the very aggressive time schedule for installation in 2013, only two sensor options are able to comply with the production plan
 - planar n-in-n
 - 3D DDTC
- IBL-type sensors from these technologies have been manufactured
- An extensive test programme with FE-I4 assemblies has started
 - FE-I4 flip-chipping
 - irradiations

Upgrad

FLAS

- test-beam comparison
- Based on these results, the IBL sensor will be chosen in mid-2011

ATLAS Upgrade

Planar Sensors for IBL

- Planar sensors have been shown to yield
 more than 10 ke⁻ after 5 · 10¹⁵ n_{eq}/cm² at 1 kV
 - should be sufficient for good hit efficiency with FE-I4 which will be demonstrated soon
- Several IBL sensor qualification wafers have been produced very successfully
 - high yield, ~200-250 µm inactive edge
 - thresholds below 3 ke⁻ possible with FE-I4
- Planar IBL (pre-)production ongoing
 - delivery of > 50 wafers expected by mid-July

Dortmund

- wafer design has already been submitted
 - 4 FE-I4 2x1 MCMs
 4 FE-I4 SCs
 - 4 FE-I3 SCs

Daniel Muenstermann | 4th Helmholtz Allianc

Daniel Muenstermann

3D sensors for IBL

- For Fast-Track IBL 3D chose double-side 3D to reduce complexity
- Will be fabricated with 200 microns guard fences and a thickness of 230 microns.
- Double sided with deep column proved good radiation hardness performance with moderate bias voltage (120-150V at 5 · 10¹⁵ n/cm²) and power dissipation of 34 mW/cm² at 5 · 10¹⁵ n/cm² at -10°C

Completed FBK-wafer

Daniel Muenstermann | 4th Helmholtz Alliance Detector Workshop | March 16th, 2011

Jpgrade

S

IBL electronics: FE-I4

- FE-I3 inefficient beyond 3 · 10³⁴ cm⁻² s⁻¹ due to congested DC-bus
- FE-I4 assets:
 - local memory cells (no bus activity except for readout
 - larger active fraction
 - higher data rate
 - more radiation hard (130 nm)
- Works quite well
- FE-I4B submission in summer

-14
)x250
)x336
x19.0
89%
10
10
1.5
1.2
160

IBL staves

- very little space → low-profile stave
- X/X_0 very important \rightarrow lightweight stave
 - carbon foam
 - no shingling, but flat arrangement of detector modules
 - 3D : SingleChip modules (1 FE-I4 per sensor)
 - Planar: 'slim edges' (<450 µm inactive edge): MultiChip modules (2 FE-I4 per sensor)
 - Baseline: single Titanium cooling pipe
 - CO₂ cooling

Omega CF Iaminate Ti or CF pipe G. Darbo

2017: A case study

- The delay of the second long shutdown to 2017 would grant the opportunity to build and install a new Pixel detector which could offer
 - improved physics capabilities: lower X/X0, better b-tagging, granularity, ...
 - replacement of already aged detector
- Design would rely on FE-I4 chip and already existing options for cooling and mechanics drastically reducing the cost
- Case study to explore the feasibility and performance improvements is currently underway

Daniel Muenstermann | 4th Helmholtz Alliance Detector Workshop | March 16th, 2011

Upgrades for sLHC/HL-LHC

- All-silicon tracker:
 - 2 longstrip-layers
 - 2-3 shortstrip-layers
 - 4-5 pixel-layers

F

Dedicated Track-Trigger-layers being discussed

Reminder: Fluences at sLHC

- integrated luminosity for sLHC: 3000 fb⁻¹
- including a safety factor of 2 to account for all uncertainties this yields the following fluences:
 - 2 · 10¹⁶ n_{eq} cm⁻² at 3.7 cm radius (pixel b-layer)

R(cm)

100

80

60

40

20

0

50

100

150

IAN DAWSON, VALENCIA TRACKER LIPGRADE WS 11/2007

- up to 10¹⁵ n_{eq} cm⁻² at 30 cm radius
- > 10¹⁴ n_{eq} cm⁻² at the outer tracker radius

Longstrips

Shortstrips

Pixels «

250

200

300

350

400

Z(cm)

Upgrade

S

Innermost sensors: 3D

- Main cause for the decrease of collected charge above 10¹⁵ n_{eq} cm⁻²: trapping
- Possible amendment: Shorter drift distances
 → 3D-electrodes realised with DRIE-etching
- Several manufacturing methods and facilities established:
 - Double-sided Double-Type Columns (DDTC)
 - Full-3D with active edges

Upgrade

ATLAS

Daniel Muenstermann | 4th Helmholtz Alliance Detector Workshop | March 16th, 2011

CERN

Innermost sensors: 3D

- Instead of 250 µm drift length only 55 to 105 µm
 - → less trapping, better CCE
- Charge amplification observed
 - → apparently general phenomenon of highly irradiated silicon
- Challenges:
 - production yield
 - capacitance
 - \rightarrow noise, threshold

Daniel Muenstermann | 4 Heimfoltz Alliance Detector Workshop | March 16¹¹, 2011

Innermost sensors: Diamond

- virtually no leakage current, even decreasing after irradiation
 - → no cooling required
- low capacitance \rightarrow low noise
- large CCD pCVD material being tested
- but: trapping exists, S/N decreasing with fluence
- diamond used already for several BCMs, **CMS Pixel Luminosity Telescope**

oorad

0.9

Planar sensor results

- With sufficient cooling, very high bias voltages are possible (up to 2 kV!)
- Charge amplification at high voltages/fields observed
- Usage of planar sensors in
 - all but innermost pixel layer appears to be qualified (similar to IBL!)
 - innermost layer feasible but needs further study:
 - stability of charge amplification
 - handling of very high bias voltages

Daniel Muenstermann

40

20

1017

1016

1015

1014

Cost efficient pixel sensors for large radii

- pixel sensors offer improved spatial resolution and reduced occupancy
- only one detector layer needed per space-point (two with stereo-angle for strips)
- since ATLAS production, large advances in cost efficiency:

Item	ATLAS Production	Costing goal 2008	Current best estimate for large volumes
Sensor	~ 55 CHF/cm ²	~ 50 CHF/cm ²	< 25 CHF/cm ²
Readout chip	~ 150 CHF/cm ²	< 50 CHF/cm ²	< 30 CHF/cm ²
Bump-bonding	~ 190 CHF/cm ²	< 50 CHF/cm ²	< 30 CHF/cm ²
Sum	~ 400 CHF/cm ²	< 150 CHF/cm ²	< 85 CHF/cm ²

- current cost estimate may still decrease significantly
 - single-sided n-in-p sensors ought to be even cheaper than strip sensors (better yield)
 - industrial bump-bonding (C4NP) might become available for 50 µm pitch
 - Iarge-scale FE-I4.2 production might be with cheaper vendor
 - cost efficiency important aspect for SLHC
 - making good progress towards competitive pricing

Daniel Muenstermann | 4th Helmholtz Alliance Detector Workshop | March 16th, 2011

Pixels prototyping

- Efforts currently focused on outer pixel layers (need longest production time)
- Basic concept:
 - double-sided staves
 - carbon foam
 - flex inside of stave
 - 2x2 MultiChip-Modules

- Extensive prototyping programme starting (Stave 2010)
- Many 'real' components soon available:
 - 2x (2x1) MC-sensors that can serve as 2x2 MC-sensor prototypes
 - FE-I4

Upgrade

S A

- Cost reduction an important topic for pixels at large radii
 - low-cost bump-bonding

Strip sensors: Collected charge with n-in-p strips

- collected charge > 14000 e⁻ at 10^{15} n_{eq} cm⁻² and 900V bias voltage
 - well sufficient for all envisaged strip regions
- sensor self heating due to leakage current → sufficient operation temperature

Strip prototyping

- n-in-p sensors in full size available (ATLAS07)
- Breakdown voltage > 1000 V
- Radiation hardness verified up to 10¹⁵ n_{eq} cm⁻²
- Full-size sensor irradiations accomplished
 - sensors
 - modules

Strip prototyping: staves

- Extensive stave prototyping programme exists (stave06 ... stave09)
- Focus on short strip part extensive experience with current (long strip) SCT
- Baseline: Stave concep
 - Hybrid glued to senso
 - Sensor glued to stave
- Readout chip:
 - ABCN25 (128 channels)
 - → ABCN13 (256 ch)

BALASS Upgrade

Summary

Upgrade

ATLAS

- Upgrade plans for ATLAS have been impacted by recent shifts of LHC schedule:
 - nSQP and IBL now both planned for 2013 shutdown
 - sLHC/HL-LHC-Upgrade planned for 2022 shutdown
 - case study for a possible new pixel detector in 2017 underway
- IBL has adopted "fast track" schedule: ambitious but possible
 - sensor qualification currently underway with irradiations and test beams
 - planar and 3D DDTC sensors to be qualified, sensor choide mid-2011
- R&D and prototyping for SLHC upgrade continues
 - several sensor types under study for innermost layer(s)
 - prototypes with n-in-p planar sensors for outer pixel and strips underway
 - new management structure to better coordinate efforts (USC)
 - next ATLAS Upgrade week will be held in 10 days in Oxford

