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SiPMs...
...usually are arrays of Geiger-mode avalanche photodiodes with 
passive quenching made of doped silicon...
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I. Semiconductor Basics
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Structure of Semiconductors

● primitive cell has diamond 
structure

● two intersecting fcc lattices
● tetrahedral covalent bonds

(Si: [Ne] 3s2 3p2 : [Ne] 3[sp3]4)
● inner shells are full and do not 

contribute to the binding

● intrinsic properties

● semiconductor devices are 
built on the surface 
→ orientation of crystal planes

(T = 300K) Si GaAs

a / Å 5.4 5.7

ε
pair

 / eV 3.6 4.4

drift mobility

electrons / cm2/Vs ~ 1450 ~ 8800

holes / cm2/Vs ~ 500 ~ 320

saturation velocity

electrons / cm/s 1 x 107

holes / cm/s 8.4 x 106 107

S.M. Sze, K.K. Ng,
Wiley, 2007
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Reciprocal Lattice

● basis vectors of primitive cell

● basis vectors of reciprocal lattice

● helps to visualize energy band 
structures along main directions 
of the crystal

● points : Γ (0,0,0), X, L, K
● directions: <1,0,0>: Δ, <1,1,1>: Λ, 

<1,1,0>: Σ
● orientation of standard Si wafers 

<1,0,0> or <1,1,1>

a ,b ,c ⇒ R= m anb pc

a* = 2
b×c
a⋅b×c

, ...

primitive cell of a bcc reciprocal
lattice for a direct fcc lattice

Wigner-Seitz cell
≡ first Brillouin zone

S.M. Sze, K.K. Ng,
Wiley, 2007
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Energy Bands

● atoms have discrete energy levels
● evolve into energy bands when

● distance of atoms decreases
● number of atoms increases

→ valence band and conduction 
band with possible energy gap

● width of energy gap determines 
nature of the material

● conduction band empty at T=0K
● at T>0K electrons can get into 

the conduction band by thermal 
excitation

H. Göbel, Springer, 2008

Ibach, Lüth, Springer
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Energy Bands and Band Gap

● width of energy gap
● decreases with temperature
● reduces in highly doped materials

● complicated band structure: subbands (can be degenerate)
● indirect (Si) vs. direct (GaAs) semiconductors: E

C
(min) shifted w.r.t Γ

S.M. Sze, K.K. Ng,
Wiley, 2007

E k  = ℏ2 k 2

2m* ,
1
mij

* =
∂2 E K 
∂ k i∂ k j

v g =
1
ℏ

dE
dk

, p = ℏ k
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Doping

● doping introduces energy levels 
inside the energy gap

● impurity concentration
● N

D
, N

A
 ~ 1012 – 1018 cm-3

● dopants for silicon
● donors: N, P, As, Sb, Bi (Gr. V)

→ donor levels: E
C
 - O(50meV)

● acceptors: B, Al, Ga, In, Tl  (Gr. III)
→ acceptor levels: E

V
 + O(50meV)

● ionization energies comparable to 
kT (~26 meV) → easy thermal 
excitation, full ionization at 300K

H. Göbel, Springer, 2008
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Fermi Level

n =∫
EC

∞

N E F E dE

● number of carriers in conduction 
band → integrate of number of states 
N(E) and occupancy F(E)

● calculation of carrier concentrations 
requires knowledge of Fermi energy

● electrons

● holes

N C=2  2mde kT

h2 
3/2

MCn = N C exp− EC−E F

kT  ,

N V=2 2mdh kT

h2 
3 /2

p = N V exp −E F−EV

kT  ,
S.M. Sze, K.K. Ng, Wiley, 2007
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Intrinsic Charge Carriers

● thermal excitation in undoped 
silicon → intrinsic charge 
carrier density n

i

yields

E F = E i =
ECEV

2
 kT

2
ln N V

NC


n i=N C exp−EC−E i

kT = NC NV exp− EG

2kT  S.M. Sze, K.K. Ng, Wiley, 2007

H. Göbel, Springer, 2008
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Intrinsic Charge Carriers

Si GaAs

E
G
(300K) / eV 1.12 1.42

n
i
(300K) / cm-3 1.45 x 1010 1.79 x 106

n
i
(273K) / cm-3 1.27 x 109 7.91 x 104

n
i
(77K) / cm-3 3.80 x 10-20 9.51 x 10-32

niT 
ni 300K 

= T
300 

3/2

⋅
exp− EG T 

2kT 
exp − EG 300K 

2k⋅300 

● strong temperature 
dependence of intrinsic carrier 
density

● ~ factor 10 between room 
temperature and 0°C

● Si is an isolator at liquid nitrogen 
temperatures

● width of band gap (Si vs. 
GaAs) plays an additional role
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Carrier Concentration

n0 = N D  p0 =
n i

2

N D

p0 = N A  n0 =
n i

2

N A

N D
+ =

N D

1gDexp [ EF−E D/kT ]
N A

- =
N A

1 g A exp [ E A−EF / kT ]

nN A
- =pN D

+

● concentration of ionized donors 
and acceptors

● charge balance

● mass-action law still applies

n ≈  N D−N A

2 N A
N C exp [−EC−E D

kT ]

S.M. Sze, K.K. Ng, Wiley, 2007
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Carrier Mobility

● drift velocity at low fields

● carrier mobility affected by 
interaction with

● acoustic phonons

● ionized impurities

→ dependence on
● effective mass
● temperature
● impurity concentration

l ∝
1

mc
* 5/2T 3/2

i ∝
T 3/2

N I m
*1 /2

 =  1
l


1
i

−1

v d =  E

S.M. Sze, K.K. Ng, Wiley, 2007

total mobility
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Carrier Mobility

● charge carriers emit and absorb 
phonons

● at high electric fields (>104V/cm) 
phonon emission ist more likely
→ drift velocity saturates at

● (comparable to drift velocities in 
gas detectors)

● impact ionization only becomes 
important at field strenghts larger 
than 105 V/cm

v s =  8 E p

3m0

≈ 107 cm /s

(for high-purity semiconductors)

S.M. Sze, K.K. Ng, Wiley, 2007



15. Mar. 2011 M. Merschmeyer, Physics Institute IIIA, RWTH Aachen University 17

Impact Ionization

● at sufficiently high fields carriers gain 
enough energy for secondary ionization

● ionization rate α, e.g. for electrons

● electron ionization dominates in silicon 
→ device construction (breakdown at 
lower electric fields)

● generation rate at fixed  
location

n =
1
n

dn
d tv n

=
1
nvn

dn
dt

dn
dt

=
dp
dt

= nn vnp pv p

S.M. Sze, K.K. Ng, Wiley, 2007
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Summary of Part I

● silicon is well suited for building semiconductor photodetectors
● band gap of 1.12 eV → good absorption for optical photons
● indirect semiconductor: transition needs additional phonon or larger photon 

energy
● can sustain large electric fields → impact ionization, intrinsic amplification

● doping
● group III elements: „acceptors“, group V elements: „donors“
● additional energy levels are only O(50meV) above valence band or below 

conduction band → easy thermal excitation
● typical impurity concentrations: 1012 to 1018 cm-3

● drawback: strong temperature dependence of all properties
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II. p-n Junction
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p-n Junction

● ideal/simple case: abrupt change from 
donor to acceptor impurities

● semiconductor is electrically neutral in 
thermal equilibrium

● maximum electric field E
m

● built-in (diffusion) potential Ψ
bi

bi≈
kT
q

ln  N DN A

n i
2 

Em =
qN DW Dn

 s
=

qN AW Dp

 s

N AW Dp = N DW Dn

S.M. Sze, K.K. Ng,
Wiley, 2007
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Depletion Zone

● APD ~ one-sided abrupt 
junction (p+-n or n+-p)

(with N=N
D
 for N

A
>>N

D
 and 

vice versa)

● depletion zone 
capacitance

W D =  2s
qN

bi−V 

W D = W DpW Dn =  2s
q  N AN D

N AN D
 bi−V 

CD =
 s

W D

=  qs N2
bi−V  F / cm−2

width of the depletion zone

(reverse bias)

breakdown
conditions

S.M. Sze, K.K. Ng,
Wiley, 2007
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I-V Characteristic

● p-n junction under bias voltage
● forward bias (pn>n

i

2)

● reverse bias (pn<n
i

2)

● total current through ideal diode

● with saturation current

● 60mV of voltage increase raise 
forward current by one decade

● important deviation: junction 
breakdown

J = J pJ n = J 0[exp  qVkT −1]

J 0 =
q D pn i

2

L p N D


q D nni

2

LnN A

= J 0T 

S.M. Sze, K.K. Ng,
Wiley, 2007
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Junction Breakdown I

● breakdown mechanisms
● thermal instability
● tunneling breakdown
● avalanche breakdown

● example: break down initiated 
by hole current I

p0

● hole multiplication factor

● M
p
 ~ ∞ at breakdown

tunneling

avalanche

dI p = I pp dxI nndx

M p ≡
I
I p0

1− 1
M p

= ∫
0

W Dm

 p exp[−∫0
x

p− ndx ' ]dx

∫
0

W Dm

 p exp[−∫0
x

 p−ndx ' ]dx = 1

∫
0

W Dm

n exp[−∫
x

W Dm

n− pdx ' ]dx = 1

condition for hole-initiated breakdown

condition for electron-initiated breakdown

S.M. Sze, K.K. Ng,
Wiley, 2007
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Junction Breakdown II

● breakdown voltage

● (approximation) for 
various semiconductors

V BD =
EmW Dm

2
=
sEm

2

2 qN
V

V BD ≈ 60  E g

1.1eV 
3/2

 N

1016cm−3 
−3 /4

V

S.M. Sze, K.K. Ng, Wiley, 2007
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Junction Breakdown III

● depletion layer width 
has strong N 
dependence

● electric field at 
breakdown only 
varies very slowly 
with N

Em =
4×105

1−1/3log10N /1016 cm−3
V /cm

S.M. Sze, K.K. Ng, Wiley, 2007
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Summary of Part II

● ideal: abrupt p-n junctions ('simple' calculations, field properties)
● maximum electric field at the interface between the n- and p-doped 

areas
● width of depletion zone depends on doping and bias voltage and 

typically is about 0.1 – 10 μm
● depletion zone acts as capacitance which is inversely proportional 

to the width of the zone
● p-n junction shows a breakdown at large reverse bias which can 

be used for the amplification of the initiating charge carriers
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III. Photodetectors



15. Mar. 2011 M. Merschmeyer, Physics Institute IIIA, RWTH Aachen University 28

Optical Properties of Silicon

● coefficient α determines 
strength (and depth) of 
absorption

● small λ: absorption near 
surface

● large λ: light can penetrate 
deeper into semiconductor

→ determines quantum 
efficiency

● thin devices  (α*W
D
 'not 

large')
● multiple reflections

→ consider reflection and 
transmission

fundamental
absorption edge
(for Si)

700 nm

400 nm

1100 nm

short wavelength
cutoff (surface
recombination)

 =
hc
E

=
1240

E eV 
nm

S.M. Sze, K.K. Ng, Wiley, 2007
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Photodetectors

● classification (gain & structure)
● photoconductor

gain : variable
● photodiode (p-n, p-i-n, ...)

gain : ≤ 1
● avalanche photodiode (APD)

gain : 102 - 104

● Geiger-mode APD
gain : 105 - 106

● basic working principle
● carrier generation by incident light
● carrier transport in electric field
● photo current → output signal

● quantum efficiency

● photosensitivity / responsivity

=
I phot

q  phot

=
N pe

N 
, = 

S =
I phot

Popt

=
I phot

 phot h
= 

nm
1240

A/W

S.M. Sze, K.K. Ng, Wiley, 2007
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Photodiode I

● p-n junction or p-i-n type (intrinsic 
layer can be adjusted to optimize 
quantum efficiency)

● separation of electron-hole pairs 
generated by high electric field

● electron-hole generation rate

● drift current

● quantum efficiency

= 1−R[1− exp−W D
1 L p ]

G e x = 0 exp− x 

J dr =−q∫
0

W D

Ge  xdx = q0 [1−exp−W D  ]

S.M. Sze, K.K. Ng, Wiley, 2007
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Photodiode II

● internal quantum 
efficiency can be 
optimized by 
adjusting the width of 
the depletion zone to 
the wave length

● narrow widths are 
desirable for 
telecommunications 
(transit time of 
carriers introduces 
phase shift between 
photon flux and 
photocurrent) S.M. Sze, K.K. Ng, Wiley, 2007
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Avalanche Photodiode I

M = {1−∫
0

W D

n exp [−∫
x

W D

n− pdx ' ] dx}
−1

● operated at high reverse bias   
→  electron ionization is dominant

● electron multiplication factor

● practical limit of photomultiplication

V
B
: breakdown voltage

I
p
 : primary photocurrent

R
s
: effective series resistance

n: constant depending on semiconductor

M ph, max=  V B

n I pRs

S.M. Sze, K.K. Ng,
Wiley, 2007
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Avalanche Photodiode II
● electron-hole creation is statistical 

process → excess noise factor

● describes increase of shot noise 
w.r.t. noiseless APD

● for electron injection (k=α
p
/α

n
)

(k=0 → F(M)=2, k=1 → F(M)=M)
● high multiplication noise is bad for 

single photon counting...

F M  ≈ kM2− 1
M 1−k 

F M  =
〈M 2〉
〈M 〉2 =

〈M 2〉
M 2

S.M. Sze,
K.K. Ng,
Wiley, 2007
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Avalanche Photodiode III
● optimum wavelength range for 

silicon APDs: 600 – 800 nm
● 100% QE can be reached

● hole-to-electron ionization coeff. 
ratio k depends on E field

● 0.1 (at 3x105 V/cm) to 0.5 (6x105 
V/cm)

→ control noise by
● keeping E field as low as possible
● initiate avalanche by electrons

● APD profiles
● large drift region (sat. velocity)
● small avalanche region
● use p-on-n (short wavelengths) or 

n-on-p (long wavelengths) types S.M. Sze, K.K. Ng, Wiley, 2007



15. Mar. 2011 M. Merschmeyer, Physics Institute IIIA, RWTH Aachen University 35

Geiger-mode APD

● in a GAPD the field is so 
high that electrons AND 
holes contribute to 
avalanche breakdown

● positive feedback, requires 
external 'quenching' 
mechanism

● quenching: reduce electric 
field by reducing V

op

● passive queching: resistor
● active quenching

D. Renker, E. Lorenz, J.Inst.4 (2009), p04004

→ SiPM: combination of a 
number of small GAPD cells
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Summary of Part III

● absorption properties of silicon are ideal for optical photons
● electron-hole pairs are generated in the depletion zone of a p-n 

junction and separated by an electric field
● internal quantum efficiency is determined by the width of the 

depletion zone and the absorption properties for the respective 
wave lengths; antireflective coatings optimize the total quantum 
efficiency

● avalanche photodiodes work at large reverse bias voltages 
(several tens of volts) and multiply the initially produced carriers

● structure of APD (p-on-n, n-on-p) determines the sensitivity w.r.t. 
the wave length and the noise properties

● GAPDs work at even higher voltages → higher multiplication, but 
the avalanche breakdown has to be quenched externally
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IV. Silicon Photomultipliers
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Silicon Photomultipliers

● arrays of GAPDs are 
nowadays called SiPM, 
MPPC, SSPM, …

● SiPMs have positive and 
negative aspects w.r.t. 
photomultiplier tubes:

● SiPM pros
● high photo detection efficiency
● photon-number resolving
● low operating voltage
● insensitive to large B fields
● 'low' price
● 'standard chip technology'

● SiPM cons
● dark count rate
● afterpulsing
● optical cross talk
● sensitive area

+

–
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SiPM Operation I

● operated at reverse bias V
op

 > V
bd

 

(→ overvoltage)

● sum of multiple APD output pulses 
results in large pulse

● charge from single APD cell

● linear gain

● a photon can fire more than one cell 
(opt. crosstalk, afterpulsing) → real 
gain (~ 105 to 106)

Q cell = C cell × V op−V bd 

V ov = V op−V bd

Glin = Qcell × N pe

Hamamatsu Photonics

G real V ov Glin
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SiPM Operation II

● SiPM is very sensitive to operating conditions
● breakdown voltage V

bd
 (and other parameters) 

depend on ambient temperature T
● overvoltage V

ov
 needs adjustment

J. Rennefeld, RWTH Aachen

Hamamatsu S10362-11
cell size: 50 x 50 μm2

Hamamatsu Photonics
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SiPM Operation III
J. Schumacher, M Lauscher, RWTH Aachen

● at breakdown voltage → substantial change of dark current
● temperature coefficient of 56mV/K confirmed
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SiPM I-V Characteristic

● SiPM is basically 
a diode and a 
series resistor 
→ typical I-V 
characteristics

● quenching 
resistors limit the 
forward current

reverse bias voltage

breakdown

forward
current

dark current

M. Lauscher, RWTH Aachen

Rtot ~ ∑N cell

Rquench
−1 

−1
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SiPM I-V Characteristic: Zoom

forward
voltage

breakdown
voltage

M. Lauscher, RWTH Aachen

● forward bias 
region shows 
expected 
behavior 
(diode+series 
resistor)

● reverse bias 
region has 
'initeresting' 
features
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SiPM I-V Characteristic: Resistivity

M. Lauscher, RWTH Aachen

● SiPM exhibits 
approximate 
ohmic behavior 
at large reverse 
bias as well as 
for a sufficient 
forward voltage

● R
tot

 ~ 1 kΩ

● N
cell

 = 100

→ R
quench

 ~ 100 kΩ
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SiPM Output

● discrete peak heights → 
discrete charge spectrum

● resolution depends on 
charge integration time 
window

● intensity spectrum of the 
SiPM signal shows 
discrete and equidistant 
peaks

● cleanliness depends on 
SiPM type, V

op
, T and the 

background light flux

0.5 photoelectron
threshold

1.5 photoelectron
threshold
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SiPM Output

M. Lauscher, RWTH Aachen

pedestal
peak

1 p.e.
peak

gain

p k  = e−〈N pe〉⋅
〈N pe 〉

k

k !
〈N pe 〉 = −ln  p 0 

● charge integration 
yields 'finger spectra'

● pedestal peak
● photoelectron peaks

● good pixel uniformity: 
SiPM → quasi-analog 
photon detector

● gain (incl. amplifier) 
can be extracted

● get average number 
of photoelectrons 
from pedestal:
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Dark Count Rate

● SiPMs are noisy: typical 
DCR at 0.5 p.e. threshold 
is 0.1 – 1 MHz (per mm²)

● thermal generation of 
carriers and contributions 
from afterpulses and 
optical cross talk

● two-cell noise for SiPM 
with single cell noise R

1
 ~ 1 

kHz, time window τ ≤ 100 
nsR2=2R1

2 = 0.2 s−1

J. Schumacher, RWTH Aachen
R2, tot ~ N cell

2 ⋅R2 ≈ N cell
2 ⋅0.1 s−1
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Photo Detection Efficiency (PDE)

● PDE = probability to detect a 
single photon at a threshold of 
about 0.5 p.e.

● depends on
● quantum efficiency (QE)
● cell geometry (fill factor FF)
● avalanche trigger probability (P

av
)

● determination:
● average amount of incoming photons 

in given time interval (fixed λ): <N
γ
>

● get <N
pe

> from pedestal fraction

Hamamatsu Photonics

PDE  ,V op , T  = QE  ,T  × FF × Pav V op , T 

PDE  = 〈N pe 〉 / 〈N 〉
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Quantum Efficiency

● absorption of optical photons in silicon 
has strong wavelength dependence

● dimensions of depletion zones ~ O(1 μm)
● α = 104 cm-1 → 63% of light absorbed within    

1 μm (99.995% within 10 μm)
● α = 106 cm-1 → 63% of light absorbed within    

0.01 μm (~100% within 1 μm)
● device optimization must consider

● wave length of incoming light
● width of depletion zone
● antireflective coatings at the surface

I x  ~ exp− x 

S.M. Sze, K.K. Ng, Wiley, 2007
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SiPM Geometry: Fill Factor
● cell separation and quenching 

resistor cause insensitive space 
between cells
→ geometrical fill factor

● depends on cell size (e.g. for 
Hamamatsu S10362 series)

● about 80% for 100 x 100 μm2

● about 30% for 25 x 25 μm2

● solutions
● integrate quenching resistor into 

silicon bulk material
Hamamatsu

Photonics

FF=
active area

total cell area

M. Yokoyama et al.,
NIM A610 (2009) 362
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Avalanche Probability

W. Oldham et al.,
IEEE Tr. El. Dev. 19
(1972) 1056

● avalanche can be started by electrons or 
holes, depending on λ and location of pair 
creation

● ionization rate is larger for electrons, those 
are more likely to trigger an avalanche

S.M. Sze, K.K. Ng,
Wiley, 2007
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Optical Cross Talk I

● photons from visible and infrared 
spectrum can be emitted during 
breakdown in a cell
→ can trigger breakdowns in 
neighbouring cells

● remedied by trenches between 
cells (→ limits fill factor)

R. Mirzoyan, NDIP08, Aix-les-Bains

Aix-la-Chapelle

105 carriers generate 2-3
photons below 1μm

R. Newman, PR100, 1955, 700

H. Chagani et al., NP B197 (2009) 283
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Optical Cross Talk II

● derive cross talk probability from QDC spectrum
● cross talk independent on temperature (at proper overvoltage)

pct =
∫

>1 p.e.

∞

dN /dqdq

∫
0

∞

dN /dqdq

M. Lauscher, RWTH Aachen
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Afterpulsing I

● carriers can be trapped 
during avalanche 
breakdown and released 
later on
→ can trigger a new 
avalanche several 100ns 
afterwards

● increase the noise for 
large charge integration 
windows
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Afterpulsing II
● evaluate time 

difference between 
successive peaks

● request 'quiet' time 
interval of 300ns 
before trigger pulse

● various components
● 'dead time' effects
● thermal contributions 

(~3MHz)
● fast and slow 

afterpulsing effects

M. Lauscher, RWTH Aachen
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Dynamic Range / Recovery Time

Hamamatsu Photonics

● number of cells determines 
dynamic range

● good linearity only for N
γ
 << N

cell

● valid for ideal SiPM...

N fired = N cell⋅1−e
−

N ph

N pixel 
● fired cells need time to fully 

recover (V
bd

 → V
op

)
● ~ 20 to 200 ns for pixel sizes from 

25 to 100 μm
● dd
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Summary Part IV
● SiPM operation requires fine control of the operating conditions – it 

is very sensitive to even small changes of operating voltage 
(overvoltage) and ambient temperature

● SiPM is 'a collection' of diodes and series resistors → well known 
I-V characteristics and features (breakdown voltage, diffusion 
voltage, ohmic behaviour, dark current)

● SiPM output: discrete pulses – integrated yields a 'finger spectrum' 
→ count photons

● SiPMs have a high dark count rate which can be controlled by V
op

 

and T but requires the application of thresholds for noise reduction
● the photodetection efficiency depends on the material properties, 

the cell geometry and the operating conditions (overvoltage, T)
● phenomena like afterpulsing and optical cross talk produce a 

substantial noise of the device (w.r.t. thermal noise)
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V. Special Topics
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SiPM Quenching Mechanism
V.N. Grebenyuk et al., arxiv:0903.1161

● detailed numerical simulation 
of the avalanche process

● during avalanche 
capacitance voltage of 
depletion layer decreases

● avalanche stops when the 
voltage drops below the 
breakdown voltage
→ avalanche is first 
quenched by the discharge 
of the diode capacity 
→ current quenching 
resistors are too large and 
result in long recovery times
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Electrical Model of an SiPM

F. Corsi,
NIM A572 (2007) 416

H. Otono,
NIM A610 (2009) 397

● model of one active pixel plus 
(N-1) 'silent' pixels

● model includes generation of 
carriers by avalanche process 
→ time dependence of 
multiplied photocurrent

● dedicated waveform analysis 
for dead time determination

Q = C dC qV
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Summary

● building a good SiPM requires a lot of 'fine tuning' and a lot of 
knowledge about solid state physics ('which particle physicists 
mostly try to avoid...')

● SiPM exhibits all facets of a silicon photodetector → nice toy

● SiPMs nowadays are used in certain niches (where the noise is 
not a big issue)

● large-scale usage in HEP experiments is starting now but still 
requires a lot of R&D and testing
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Outlook

● we will see various SiPMs for special needs (low noise, timing 
properties, UV-enhanced, high dynamic range, high PDE, digital 
SiPMs, ...)

● medical physics
● astroparticle physics
● HEP experiments
● (…and whatever else they can be used for...)


