

Introduction to the SiPM working principle

4. Detector Workshop of the Helmholtz Alliance "Physics at the Terascale"

SiPMs...

...usually are arrays of Geiger-mode avalanche photodiodes with passive quenching made of doped silicon...

Time

Overview

I. Semiconductor Basics

II. p-n Junctions

III. Photodetectors

IV. Silicon Photomultipliers

V. Special Topics

15. Mar. 2011

Literature

- S.M. Sze, K.K. Ng: "Physics of Semiconductor Devices", Wiley, 2007
- G. Lutz: "Semiconductor Radiation Detectors", Springer, 1999
- H. Göbel: "Einführung in die Halbleiter-Schaltungstechnik", Springer, 2008
- presentations by Y. Musienko, and various papers...

I. Semiconductor Basics

UNIVERSITY Structure of Semiconductors

- primitive cell has diamond structure
 - two intersecting fcc lattices
 - tetrahedral covalent bonds (Si: [Ne] 3s² 3p² : [Ne] 3[sp³]⁴)
- inner shells are full and do not contribute to the binding

• intrinsic properties

(T = 300K)	Si	GaAs
a / Å	5.4	5.7
$\epsilon_{_{pair}}$ / eV	3.6	4.4
drift mobility		
electrons / cm ² /Vs	~ 1450	~ 8800
holes / cm²/Vs	~ 500	~ 320
saturation velocity		
electrons / cm/s	1 x 10 ⁷	
holes / cm/s	8.4 x 10 ⁶	10 ⁷

 semiconductor devices are built on the surface
 → orientation of crystal planes

Reciprocal Lattice

• basis vectors of primitive cell

$$\vec{a}, \vec{b}, \vec{c} \Rightarrow \vec{R} = m\vec{a} + n\vec{b} + p\vec{c}$$

basis vectors of reciprocal lattice

$$\vec{a}^* = 2 \pi \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \times \vec{c}}, \dots$$

- helps to visualize energy band structures along main directions of the crystal
 - points : Γ (0,0,0), X, L, K
 - directions: <1,0,0>: Δ, <1,1,1>: Λ,
 <1,1,0>: Σ
- orientation of standard Si wafers
 <1,0,0> or <1,1,1>

Energy Bands

H. Göbel, Springer, 2008

Leitungsband

Valenzband

Metall

- atoms have discrete energy levels
- evolve into energy bands when
 - distance of atoms decreases
 - number of atoms increases
 - \rightarrow valence band and conduction band with possible energy gap

 width of energy gap determines nature of the material

Leitungsband

Valenzband

Halbleiter

์W_∽≈1eV

- conduction band empty at T=0K
- at T>0K electrons can get into the conduction band by thermal excitation

Leitungsband

Valenzband

Isolator

W_>3eV

UNIVERSITY Energy Bands and Band Gap

	$E_{g}(0)$	α	β
	(eV)	(eV/K)	(K)
GaAs	1.519	5.4×10^{-4}	204
Si	1.169	4.9×10^{-4}	655

$$E_g(T) \,=\, E_g(0) - \frac{\alpha T^2}{T+\beta}$$

- width of energy gap
 - decreases with temperature
 - reduces in highly doped materials

- complicated band structure: subbands (can be degenerate)
- indirect (Si) vs. direct (GaAs) semiconductors: E_{c} (min) shifted w.r.t Γ

15. Mar. 2011

Doping

H. Göbel, Springer, 2008

T>0K

- doping introduces energy levels inside the energy gap
- impurity concentration
 - $N_{D}^{}$, $N_{A}^{}$ ~ $10^{12} 10^{18} \text{ cm}^{-3}$
- dopants for silicon
 - donors: N, **P**, As, Sb, Bi (Gr. V) \rightarrow donor levels: E_c - O(50meV)
 - acceptors: **B**, AI, Ga, In, TI (Gr. III) \rightarrow acceptor levels: $E_v + O(50 \text{meV})$
- ionization energies comparable to *kT* (~26 meV) → easy thermal excitation, full ionization at 300K

15. Mar. 2011

Fermi Level

 number of carriers in conduction band → integrate of number of states N(E) and occupancy F(E)

 $n = \int_{E_c}^{\infty} N(E) F(E) dE$

- calculation of carrier concentrations requires knowledge of Fermi energy
- electrons

$$n = N_C \exp\left(-\frac{E_C - E_F}{kT}\right), \quad N_C = 2\left(\frac{2\pi m_{de} kT}{h^2}\right)^{3/2} M_C$$

holes

$$p = N_V \exp\left(-\frac{E_F - E_V}{kT}\right), \quad N_V = 2\left(\frac{2\pi m_{dh} kT}{h^2}\right)^{3/2}$$

S.M. Sze, K.K. Ng, Wiley, 2007

15. Mar. 2011

Intrinsic Charge Carriers

• thermal excitation in undoped silicon \rightarrow intrinsic charge carrier density n_i

$$E_F = E_i = \frac{E_C + E_V}{2} + \frac{kT}{2} \ln\left(\frac{N_V}{N_C}\right)$$

yields
$$n_i = N_C \exp\left(-\frac{E_C - E_i}{kT}\right) = \sqrt{N_C N_V} \exp\left(-\frac{E_G}{2kT}\right)$$

15. Mar. 2011

- strong temperature dependence of intrinsic carrier density
 - ~ factor 10 between room temperature and 0°C
 - Si is an isolator at liquid nitrogen temperatures
- width of band gap (Si vs. GaAs) plays an additional role

	Si	GaAs
Е _G (300К) / eV	1.12	1.42
n _i (300K) / cm ⁻³	1.45 x 10 ¹⁰	1.79 x 10 ⁶
n _i (273K) / cm ⁻³	1.27 x 10 ⁹	7.91 x 10⁴
n _i (77K) / cm ⁻³	3.80 x 10 ⁻²⁰	9.51 x 10 ⁻³²

Carrier Concentration

 concentration of ionized donors and acceptors

$$N_D^+ = \frac{N_D}{1 + g_D \exp\left[(E_F - E_D)/kT\right]}$$
$$N_A^- = \frac{N_A}{1 + g_A \exp\left[(E_A - E_F)/kT\right]}$$

• charge balance

$$n + N_A^- = p + N_D^+$$

$$n \approx \left(\frac{N_D - N_A}{2N_A}\right) N_C \exp\left[-\frac{E_C - E_D}{kT}\right]$$

• mass-action law still applies

$$n_0 = N_D \rightarrow p_0 = \frac{n_i^2}{N_D}$$
 $p_0 = N_A \rightarrow n_0 = \frac{n_i^2}{N_A}$

15. Mar. 2011

M. Merschmeyer, Physics Institute IIIA, RWTH Aachen University

S.M. Sze, K.K. Ng, Wiley, 2007

Carrier Mobility

 10^{19}

drift velocity at low fields

$$v_d = \mu E$$

- carrier mobility affected by interaction with
 - acoustic phonons

$$\mu_l \propto \frac{1}{m_c^{*5/2} T^{3/2}}$$

- ionized impurities $\frac{1000}{\mu_i} \propto \frac{T^{3/2}}{N_r m^{*1/2}}$
- \rightarrow dependence on
 - effective mass
 - temperature
 - impurity concentration

15. Mar. 2011

Carrier Mobility

- charge carriers emit and absorb phonons
- at high electric fields (>10⁴V/cm) phonon emission ist more likely
 drift velocity exturates at
 - \rightarrow drift velocity saturates at

$$v_s = \sqrt{\frac{8E_p}{3\pi m_0}} \approx 10^7 cm/s$$

- (comparable to drift velocities in gas detectors)
- impact ionization only becomes important at field strenghts larger than 10⁵ V/cm

(for high-purity semiconductors)

Impact Ionization

- at sufficiently high fields carriers gain enough energy for secondary ionization
- ionization rate α , e.g. for electrons

$$\alpha_n = \frac{1}{n} \frac{dn}{d(tv_n)} = \frac{1}{nv_n} \frac{dn}{dt}$$

- generation rate at fixed location

$$\frac{dn}{dt} = \frac{dp}{dt} = \alpha_n n v_n + \alpha_p p v_p$$

15. Mar. 2011

Summary of Part I

- silicon is well suited for building semiconductor photodetectors
 - band gap of 1.12 eV \rightarrow good absorption for optical photons
 - indirect semiconductor: transition needs additional phonon or larger photon energy
 - can sustain large electric fields \rightarrow impact ionization, intrinsic amplification
- doping
 - group III elements: "acceptors", group V elements: "donors"
 - additional energy levels are only O(50meV) above valence band or below conduction band \rightarrow easy thermal excitation
 - typical impurity concentrations: 10¹² to 10¹⁸ cm⁻³
- drawback: strong temperature dependence of all properties

II. p-n Junction

p-n Junction

- ideal/simple case: abrupt change from donor to acceptor impurities
- semiconductor is electrically neutral in thermal equilibrium

$$N_A W_{Dp} = N_D W_{Dn}$$

• maximum electric field E_m

$$E_m = \frac{qN_D W_{Dn}}{\epsilon_s} = \frac{qN_A W_{Dp}}{\epsilon_s}$$

- built-in (diffusion) potential $\Psi_{_{bi}}$

$$\Psi_{bi} \approx \frac{kT}{q} \ln\left(\frac{N_D N_A}{n_i^2}\right)$$

15. Mar. 2011

Depletion Zone

$$W_D = W_{Dp} + W_{Dn} = \sqrt{\frac{2\epsilon_s}{q}} \left(\frac{N_A + N_D}{N_A N_D}\right) (\Psi_{bi} - V)$$

width of the depletion zone

 APD ~ one-sided abrupt junction (p⁺-n or n⁺-p)

$$W_{D} = \sqrt{\frac{2\epsilon_{s}}{qN}(\Psi_{bi} - V)}$$

(with $N=N_D$ for $N_A >>N_D$ and vice versa)

depletion zone capacitance

$$C_{D} = \frac{\epsilon_{s}}{W_{D}} = \sqrt{\frac{q \epsilon_{s} N}{2}} (\Psi_{bi} - V) F/cm^{-2}$$

15. Mar. 2011

I-V Characteristic

- p-n junction under bias voltage
 - forward bias $(pn>n_i^2)$
 - reverse bias $(pn < n_i^2)$
- total current through ideal diode

 $J = J_p + J_n = J_0 \left[\exp\left(\frac{qV}{kT}\right) - 1 \right]$

with saturation current

$$J_{0} = \frac{q D_{p} n_{i}^{2}}{L_{p} N_{D}} + \frac{q D_{n} n_{i}^{2}}{L_{n} N_{A}} = J_{0}(T)$$

- 60mV of voltage increase raise forward current by one decade
- important deviation: junction breakdown

Junction Breakdown I

condition for electron-initiated breakdown

breakdown mechanisms

- thermal instability
- tunneling breakdown
- avalanche breakdown
- example: break down initiated by hole current I_{p0}

 $dI_p = I_p \alpha_p \, dx + I_n \alpha_n \, dx$

• hole multiplication factor $M_{p} \equiv \frac{I}{I_{p0}}$ • $M_{p} \sim \infty$ at breakdown $1 - \frac{1}{M_{p}} = \int_{0}^{W_{Dm}} \alpha_{p} \exp\left[-\int_{0}^{x} (\alpha_{p} - \alpha_{n}) dx'\right] dx$

Junction Breakdown II

S.M. Sze, K.K. Ng, Wiley, 2007

1000 breakdown voltage One-sided abrupt junctions $V_{BD} = \frac{E_m W_{Dm}}{2} = \frac{\epsilon_s E_m^2}{2 q N} V (S)^{CR} a sequence where we have a sequence of the second seq$ GaAs (100) GaP 100 (approximation) for 10 $V_{BD} \approx 60 \left(\frac{E_g}{1.1 \, eV}\right)^{3/2} \left(\frac{N}{10^{16} \, cm^{-3}}\right)^{-3/4} V$ 1015 10^{14} 1016 10^{17} 1018 Impurity concentration $N(\text{cm}^{-3})$

15. Mar. 2011

Junction Breakdown III

15. Mar. 2011

Summary of Part II

- ideal: abrupt p-n junctions ('simple' calculations, field properties)
- maximum electric field at the interface between the n- and p-doped areas
- width of depletion zone depends on doping and bias voltage and typically is about 0.1 10 μm
- depletion zone acts as capacitance which is inversely proportional to the width of the zone
- p-n junction shows a breakdown at large reverse bias which can be used for the amplification of the initiating charge carriers

III. Photodetectors

Optical Properties of Silicon

- coefficient α determines strength (and depth) of absorption
 - small λ: absorption near surface
 - large λ: light can penetrate deeper into semiconductor
 - \rightarrow determines quantum efficiency
- thin devices (α*W_D 'not large')
 - multiple reflections
 - \rightarrow consider reflection and transmission

Photodetectors

- classification (gain & structure)
 - photoconductor
 - gain : variable
 - photodiode (p-n, p-i-n, ...) gain : ≤ 1
 - avalanche photodiode (APD) gain : 10² - 10⁴
 - Geiger-mode APD gain : 10⁵ - 10⁶
- basic working principle
 - carrier generation by incident light
 - carrier transport in electric field
 - photo current \rightarrow output signal

- quantum efficiency $\eta = \frac{I_{phot}}{q \ \Phi_{phot}} = \frac{N_{pe}}{N_{\gamma}}, \ \eta = \eta(\lambda)$
- photosensitivity / responsivity

S.M. Sze, K.K. Ng, Wiley, 2007

Photodiode I

- p-n junction or p-i-n type (intrinsic layer can be adjusted to optimize quantum efficiency)
- separation of electron-hole pairs generated by high electric field
- electron-hole generation rate

$$G_e(x) = \Phi_0 \alpha \exp(-\alpha x)$$

• drift current

$$J_{dr} = -q \int_{0}^{W_{D}} G_{e}(x) dx = q \Phi_{0} [1 - \exp(-\alpha W_{D})]$$

• quantum efficiency

$$\eta = (1 - R) \left[1 - \frac{\exp(-\alpha W_D)}{1 + \alpha L_p} \right]$$

15. Mar. 2011

Photodiode II

- internal quantum efficiency can be optimized by adjusting the width of the depletion zone to the wave length
- narrow widths are desirable for telecommunications (transit time of carriers introduces phase shift between photon flux and photocurrent)

S.M. Sze, K.K. Ng, Wiley, 2007

Avalanche Photodiode I

- operated at high reverse bias \rightarrow electron ionization is dominant
- electron multiplication factor

$$M = \left\{ 1 - \int_{0}^{W_{D}} \alpha_{n} \exp\left[-\int_{x}^{W_{D}} (\alpha_{n} - \alpha_{p}) dx'\right] dx \right\}^{-1}$$

practical limit of photomultiplication

$$M_{ph, max} = \sqrt{\frac{V_B}{n I_p R_s}}$$

$$V_B: \text{ breakdown voltage}$$

$$I_p: \text{ primary photocurrent}$$

$$R_s: \text{ effective series resistance}$$
n: constant depending on semiconductor

Avalanche Photodiode II

 electron-hole creation is statistical process → excess noise factor

$$F(M) = \frac{\langle M^2 \rangle}{\langle M \rangle^2} = \frac{\langle M^2 \rangle}{M^2}$$

- describes increase of shot noise w.r.t. noiseless APD
- for electron injection $(k = \alpha_p / \alpha_n)$

$$F(M) \approx kM + \left(2 - \frac{1}{M}\right)(1 - k)$$

 $(k=0 \rightarrow F(M)=2, k=1 \rightarrow F(M)=M)$

• high multiplication noise is bad for single photon counting...

15. Mar. 2011

Avalanche Photodiode III

- optimum wavelength range for silicon APDs: 600 – 800 nm
 - 100% QE can be reached
- hole-to-electron ionization coeff.
 ratio k depends on E field
 - 0.1 (at 3x10⁵ V/cm) to 0.5 (6x10⁵ V/cm)
 - \rightarrow control noise by
 - keeping E field as low as possible
 - initiate avalanche by electrons
- APD profiles
 - large drift region (sat. velocity)
 - small avalanche region
 - use p-on-n (short wavelengths) or n-on-p (long wavelengths) types

S.M. Sze, K.K. Ng, Wiley, 2007

Geiger-mode APD

- in a GAPD the field is so high that electrons AND holes contribute to avalanche breakdown
- positive feedback, requires external 'quenching' mechanism

D. Renker, E. Lorenz, J.Inst.4 (2009), p04004

- quenching: reduce electric field by reducing V_{op}
 - passive queching: resistor
 - active quenching

\rightarrow SiPM: combination of a number of small GAPD cells

Summary of Part III

- absorption properties of silicon are ideal for optical photons
- electron-hole pairs are generated in the depletion zone of a p-n junction and separated by an electric field
- internal quantum efficiency is determined by the width of the depletion zone and the absorption properties for the respective wave lengths; antireflective coatings optimize the total quantum efficiency
- avalanche photodiodes work at large reverse bias voltages (several tens of volts) and multiply the initially produced carriers
- structure of APD (p-on-n, n-on-p) determines the sensitivity w.r.t. the wave length and the noise properties
- GAPDs work at even higher voltages → higher multiplication, but the avalanche breakdown has to be quenched externally

IV. Silicon Photomultipliers

Silicon Photomultipliers

- arrays of GAPDs are nowadays called SiPM, MPPC, SSPM, ...
- SiPMs have positive and negative aspects w.r.t. photomultiplier tubes:

- SiPM pros
 - high photo detection efficiency
 - photon-number resolving
 - low operating voltage
 - insensitive to large B fields
 - 'low' price
 - 'standard chip technology'
- SiPM cons
 - dark count rate
 - afterpulsing
 - optical cross talk
 - sensitive area

SiPM Operation I

• operated at reverse bias $V_{op} > V_{bd}$ $(\rightarrow \text{overvoltage})$

$$V_{ov} = V_{op} - V_{bd}$$

- sum of multiple APD output pulses results in large pulse
- charge from single APD cell

$$Q_{cell} = C_{cell} \times \left(V_{op} - V_{bd} \right)$$

linear gain

$$G_{lin} = Q_{cell} \times N_{pe}$$

 a photon can fire more than one cell (opt. crosstalk, afterpulsing) \rightarrow real gain (~ 10⁵ to 10⁶)

 $|G_{real}(V_{ov}) \ge G_{lin}$

15. Mar. 2011

SiPM Operation II

• overvoltage V_{av} needs adjustment

15. Mar. 2011

40

50

68

6

-20

-10

10

Ambient temperature (°C)

0

20

30

SiPM Operation III

J. Schumacher, M Lauscher, RWTH Aachen

- at breakdown voltage \rightarrow substantial change of dark current
- temperature coefficient of 56mV/K confirmed

SiPM I-V Characteristic

- SiPM is basically a diode and a series resistor \rightarrow typical I-V characteristics
- quenching resistors limit the forward current

15. Mar. 2011

M. Merschmeyer, Physics Institute IIIA, RWTH Aachen University

SiPM I-V Characteristic: Zoom

 forward bias region shows expected behavior (diode+series resistor)

 reverse bias region has 'initeresting' features

SiPM I-V Characteristic: Resistivity

 SiPM exhibits approximate ohmic behavior at large reverse bias as well as for a sufficient forward voltage ≥

15. Mar. 2011

SiPM Output

- intensity spectrum of the SiPM signal shows discrete and equidistant peaks
- cleanliness depends on SiPM type, V_{op}, T and the

- discrete peak heights → discrete charge spectrum
- resolution depends on charge integration time window

SiPM Output

- charge integration yields 'finger spectra'
 - pedestal peak
 - photoelectron peaks
- good pixel uniformity: SiPM → quasi-analog photon detector
- gain (incl. amplifier) can be extracted
- get average number of photoelectrons from pedestal;

$$p(k) = e^{-\langle N_{pe} \rangle} \cdot \frac{\langle N_{pe} \rangle^{k}}{k!}$$
$$\langle N_{pe} \rangle = -\ln(p(0))$$

Dark Count Rate

Noise rate / kHz

 10^{2}

Noise Rate vs. Threshold (V $_{\rm OV}$ = 1.40 \pm 0.05 V, HAM. S103612-11-100C SN.1203)

29.13 ± 0.01 1.41 ± 0.01

 24.18 ± 0.02

 21.71 ± 0.05

 18.74 ± 0.05

 13.09 ± 0.03

 10.38 ± 0.05

 7.68 ± 0.03

 5.01 ± 0.03

 2.30 ± 0.02

 1.39 ± 0.0

 $1.43 \pm 0.0^{\circ}$

 1.39 ± 0.01

 1.35 ± 0.0

 141 ± 0.0

 1.36 ± 0.0

1.41+0.01 1.36 ± 0.01

 141 ± 0.01

- SiPMs are noisy: typical DCR at 0.5 p.e. threshold is 0.1 - 1 MHz (per mm²)
- thermal generation of carriers and contributions from afterpulses and optical cross talk
- two-cell noise for SiPM 10 with single cell noise $R_1 \sim 1$ kHz, time window $\tau \leq 100$ $n_{R_2} = 2 \tau R_1^2 = 0.2 s^{-1}$ -300 -200 -150-100-50 -250 n $R_{2,tot} \sim \binom{N_{cell}}{2} \cdot R_2 \approx N_{cell}^2 \cdot 0.1 \, s^{-1}$ Threshold / mV J. Schumacher, RWTH Aachen

15. Mar. 2011

Photo Detection Efficiency (PDE)

$$PDE(\lambda, V_{op}, T) = QE(\lambda, T) \times FF \times P_{av}(V_{op}, T)$$

Wavelength (nm)

* Photon detection efficiency includes effects of crosstalk and afterpulses.

- PDE = probability to detect a single photon at a threshold of about 0.5 p.e.
- depends on
 - quantum efficiency (QE)
 - cell geometry (fill factor FF)
 - avalanche trigger probability (P_{av})
- determination:
 - average amount of incoming photons in given time interval (fixed λ): <N,>
 - get $< N_{pe} >$ from pedestal fraction

$$PDE(\lambda) = \langle N_{pe} \rangle / \langle N_{\gamma} \rangle$$

Quantum Efficiency

 absorption of optical photons in silicon has strong wavelength dependence

$$I(x) \sim \exp(-\alpha x)$$

- dimensions of depletion zones ~ $O(1 \ \mu m)$
 - $\alpha = 10^4 \text{ cm}^{-1} \rightarrow 63\%$ of light absorbed within 1 µm (99.995% within 10 µm)
 - $\alpha = 10^6 \text{ cm}^{-1} \rightarrow 63\%$ of light absorbed within 0.01 µm (~100% within 1 µm)
- device optimization must consider
 - wave length of incoming light
 - width of depletion zone
 - antireflective coatings at the surface

UNIVERSITY SIPM Geometry: Fill Factor

M. Yokoyama et al., NIM A610 (2009) 362

- cell separation and quenching resistor cause insensitive space between cells
 - \rightarrow geometrical fill factor

 $FF = \frac{active \ area}{total \ cell \ area}$

- depends on cell size (e.g. for Hamamatsu S10362 series)
 - about 80% for 100 x 100 μm^2
 - about 30% for 25 x 25 μm^2
- solutions
 - integrate quenching resistor into silicon bulk material

Avalanche Probability

Optical Cross Talk I

R. Newman, PR100, 1955, 700

FIG. 1. A photograph of the light emitted from a worked silicon p-n junction unit operating in the breakdown region. The junction is the horizontal bow-shaped curve. Current flows vertically across it.

- photons from visible and infrared spectrum can be emitted during breakdown in a cell
 - \rightarrow can trigger breakdowns in neighbouring cells
- remedied by trenches between cells (→ limits fill factor)

Optical Cross Talk II

Crosstalk Probability for HAM. S10362-11-100C (Sno. 1203) (Errors are Systematic)

M. Lauscher, RWTH Aachen

- derive cross talk probability from QDC spectrum
- cross talk independent on temperature (at proper overvoltage)

Afterpulsing I

- carriers can be trapped during avalanche breakdown and released later on
 - \rightarrow can trigger a new avalanche several 100ns afterwards
- increase the noise for large charge integration windows

Afterpulsing II

- evaluate time difference between successive peaks
- request 'quiet' time interval of 300ns before trigger pulse
- various components
 - 'dead time' effects
 - thermal contributions (~3MHz)
 - fast and slow afterpulsing effects

Number of simultaneously input photons

- number of cells determines dynamic range
- good linearity only for $N_v << N_{cell}$
- valid for ideal SiPM...

- fired cells need time to fully recover $(V_{bd} \rightarrow V_{op})$
 - ~ 20 to 200 ns for pixel sizes from 25 to 100 μm
- dd

15. Mar. 2011

Summary Part IV

- SiPM operation requires fine control of the operating conditions it is very sensitive to even small changes of operating voltage (overvoltage) and ambient temperature
- SiPM is 'a collection' of diodes and series resistors → well known I-V characteristics and features (breakdown voltage, diffusion voltage, ohmic behaviour, dark current)
- SiPM output: discrete pulses integrated yields a 'finger spectrum' \rightarrow count photons
- SiPMs have a high dark count rate which can be controlled by $V_{_{op}}$ and *T* but requires the application of thresholds for noise reduction
- the photodetection efficiency depends on the material properties, the cell geometry and the operating conditions (overvoltage, *T*)
- phenomena like afterpulsing and optical cross talk produce a substantial noise of the device (w.r.t. thermal noise)

15. Mar. 2011

V. Special Topics

SiPM Quenching Mechanism

V, B

- detailed numerical simulation of the avalanche process
- during avalanche capacitance voltage of depletion layer decreases
- avalanche stops when the voltage drops below the breakdown voltage
 - \rightarrow avalanche is first quenched by the discharge of the diode capacity
 - \rightarrow current quenching resistors are too large and result in long recovery times

Fig. 1. Photodiode voltage V as a function of time at the operation voltage $E_{ov}=25$ V and diode capacitance 0.25 pF for $R_q=2$, 4, 6, 8, and 10 k Ω , labeled by numbers 1, 2, 3, 4, and 5 respectively. U_{br} is the threshold voltage.

Electrical Model of an SiPM

 model of one active pixel plus (N-1) 'silent' pixels

$$Q = (C_d + C_q) \Delta V$$

- model includes generation of carriers by avalanche process
 → time dependence of multiplied photocurrent
- dedicated waveform analysis for dead time determination

Summary

- building a good SiPM requires a lot of 'fine tuning' and a lot of knowledge about solid state physics ('which particle physicists mostly try to avoid...')
- SiPM exhibits all facets of a silicon photodetector \rightarrow nice toy
- SiPMs nowadays are used in certain niches (where the noise is not a big issue)
- large-scale usage in HEP experiments is starting now but still requires a lot of R&D and testing

Outlook

- we will see various SiPMs for special needs (low noise, timing properties, UV-enhanced, high dynamic range, high PDE, digital SiPMs, ...)
 - medical physics
 - astroparticle physics
 - HEP experiments
 - (...and whatever else they can be used for...)