

Erika Garutti (DESY)

Electron

SiPM application in:

• High energy physics

- low light level detection
- scintillation light readout
- astrophysics / "space" experiments
 - Cherenkov and Fluorescense light detection
 - Liquid Xenon detector
- medical applications
 - time resolution

Electror

SiPM pioneering experience

R&D for Calorimeters for the ILC

The history:

- After the LHC detectors (radiation hard / dense particle environment)
- The next generation HEP experiments -> precision experiments

- New paradigm for precision measurements in a jet environment

→ Particle Flow

Electron

*At electron-positron the final state corresponds to the underlying physics interaction, e.g. above see $H \rightarrow b\overline{b}$ and $Z \rightarrow \mu^+\mu^-$ and nothing else...

High precision LC physics demands a high precision detector:

- high precision vertex (flavor tagging) and tracking (Higgs from di-lepton recoil mass)

- precision calorimetry (heavy bosons reconstruction from di-jet decay)
- → significant improvements in the calo. system, in particular in the HCAL

14-15 March 2011

Jet energy resolution at LHC

14-15 March 2011

SiPM pioneering experience

R&D for Calorimeters for the ILC

The history:

- After the LHC detectors (radiation hard / dense particle environment)
- The next generation HEP experiments → precision experiments
- New paradigm for precision measurements in a jet environment

→ Particle Flow

a concept to improve the jet energy resolution of a HEP detector based on:

proper detector design (high granular calorimeter!!!)
+ sophisticated reconstruction software

PFlow techniques have been shown to improve jet E resolution in existing detectors, but the full benefit can only be seen on the future generation of PFlow designed detectors Requires the design of

- a highly granular calorimeter, O(1cm²) cells
- dedicated electronics, O(20M channels)
- high level of integration

14-15 March 2011

Erika Garutti

6/42

Flectron

CALLOS The prototype calorimeter system for ILC

Push for improved SiPM parameters

Hole

Electron

¹⁴⁻¹⁵ March 2011

Erika Garutti

Next step towards a ILC detector

110 cm

Electron

→ Work on integration and scalability issues ^{~ cm} (integrated electronics/ power pulsing/ data acquisition..)

¹⁴⁻¹⁵ March 2011

Erika Garutti

utti

channel

channel

Direct coupling of SiPM to scintillator

Coupling via WLS fiber has the advantage of higher uniformity: - light from the whole tile is collected and guided to the SiPM

Direct coupling → non-uniformity of light collection

Special optimization of SiPM coupling through a dimple in the scintillator allows to recover good uniformity

(study: MPI Munich)

Erika Garutti

Electron

Photon Detection Efficiency (PDE)

•The triggering probability depends on the position where the primary electron-hole pair is generated and it depends on the overvoltage.

•Electrons have in silicon a better chance to trigger a breakdown than holes. Therefore a conversion in the p+ layer has the highest probability to start a breakdown.

Ionization coefficients for electrons (α) and holes (β) in silicon 14-15 March 2011 red photon blue photon Multiplication Layer P+ et th Drift Layer n Substrate

Wavelength dependence of PDE linked to depth of penetration of photon

Blue (470nm)	0.6 µm
Green (525nm)	1.2 µm
Yellow (590nm)	2.2 µm
Red (625nm)	2.9 µm

Erika Garutti

Flectron

Photon Detection Efficiency (PDE)

- •Photons with short wavelengths will be absorbed in the very first layer of Si and create an electron-hole pair.
- •In a structure with a n-type substrate (right) the electrons drift towards the high field of the p-n junction and trigger with high probability a breakdown.
- •A G-APD made on a n-type substrate will be preferential sensitive for blue light.

•A G-APD made on a p-type substrate (left) needs long wavelengths for the creation of electrons in the p-layer behind the junction and will have the peak sensitivity in the green/red.

Photonique/CPTA (SSPM_0710G9MM) Hamamatsu (PSI-33-050C) Electron

Radiation hardness issue

Relevant for applications in rad. hard environment: what is the SiPM tolerance

^^^^^

16/42

Electron

SiPM radiation hardness

Neutron irradiation by reactor (E_n 0.8-1.2 MeV)

Only thermal noise increase after 10^9 n/cm^2 , no other significant effects on Gain and response function Gamma irradiation with ${}^{60}\text{Co} \rightarrow$ noise below MHz till 60Gy

14-15 March 2011

Erika Garutti

17 / 42

Electron

The first detector with SiPM r/o operated in a beam,

H1 Radiation Monitor and FST Trigger (disk diameter ~30 cm)

\^^^^^^^

Silicon Photomultiplier (x32)

HERA Beam-pipe

Operating conditions:

- U U_breakdown ~ 1.5 V
- Discriminator Threshold ~ 1 MIP

H1 shift tool (java applet):

Single SiPM count rate/bunch X-ng

count rate of whole detector / bunch X-ng

Electron

Hole

Organic Scintillator (1 cm thickness) 14-15 March 2011

- On-line Measurement of the Dose rate and Total Ionization Dose
- Automatic Beam Dump by either Detector for too high Dose Rate

CMS upgrade

- Outer hadron calorimeter measure leakage for high energy particles
- Scintillation light collected and guided to hybrid photo detector (HPD)

H0 scintillator tile with wavelength shifter fiber

14-15 March 2011

Electron

H0 with SiPM readout

~ 2012 - Exchange all HCAL outer HPDs with SiPMs

- 10x Improved signal to noise ratio in magnetic field
- Better sensitivity to leakage
- ~ 2015 Exchange Barrel and Endcap HPDs with SiPM (~100K)
 - ▶ Longitudinally segmented readout "High granularity"
 → Software compensation

Electron

Jim Freeman, "Silicon Photomultipliers in the CMS calorimeter", Nucl. Inst. Meth. A 617 (2010) 393-395

14-15 March 2011

Large scale application of SiPM

Erika Garutti

ND280 off-axis near detector

Flectron

Hole

Photo-sensor requirements:

- Operational in magnetic field B=0.2T(UA1 magnet)
- Very tight space constraints \rightarrow compact
- Low light yield at the end of Y-11 fibre(λ_{att}= 3.5 m)
 → PDE > PMT @ 550 nm
- Large number of channels (56000)

The design solution

4

Electron

Hole

MPPC

- Basic element of the near detector scintillator subsystem (INGRID, POD, FGD, ECAL, SMRD)
 - Extruded scintillator bar with embedded Y-11 fibre read out by individual MPPC in coupler
 - 56000 channels in total

Connectors for POD/ECAL/SMRD

Result of MPPC mass test

Device uniformity itself is considered to be much better. 20

Erika Garutti

Electron

R&D for Astro-particle and space physics

Key requirements for photo-detectors:

✓ detection of Cherenkov or fluorescent light

- → high sensitivity to UV (deep UV)
- ✓ good photon-counting capability
- ✓ rare events
 - → highest possible Photo Detection Efficiency
- $\checkmark\,$ large detectors with small number of channels
 - → larger area SiPM
- ✓ light and robust device
- \checkmark time resolution

Electron

Ground based Gamma Ray Astronomy

Gamma Ray induces electromagnetic cascade

 → Relativistic particle shower in atmosphere
 → Cherenkov light fast light flash (~ns) 100 γ / m² (1 TeV Gamma Ray)

→ MAGIC: world largest air Cherenkov telescope

which photo-detector to use?!

14-15 March 2011

Erika Garutti

Electron

Ground based Gamma Ray Astronomy

SiPM offer 60% PDE at 400nm + improvements with lower fill factor

Photo-detectors

Electron

Hole

Expensive

- Camera composed of 1000 2000pixels \rightarrow use PMT for baseline (40% PDE)
- Fast timing response (~1ns) to cope with EAS Cherenkov flashes

CAMERA

- Electronics inside the camera
- Keep low weight

Next generation: Cherenkov Array Telescope (CTA)

14-15 March 2011

Space-based High Energy Neutrino Astronomy

The Extreme Universe Space Observatory

Electron

Hole

The detector requirements:

compact and light-weight (solid state ?) high efficiency (>30-40%) photo-detectors (λ ~300-400nm) good single photon counting capability timing at the level of ≤10 ns (~few meters space resolution)

low single photoelectron dark rate (less than night sky rate)

Positron Electron Balloon Spectrometer

Proton rejection

e/p separation based on different longitudinal shower shape at a given particle energy (spectrometer)

→ extremely high granularity

14-15 March 2011

Electron

Deep UV detection: Liquid Xenon detectors

576 pixels SiPM, MePHI/Pulsar

→Attractive alternative to PMT for UV photon detection at low energy detection threshold (i.e. neutralino dark matter searches)

R&D for medical field applications

Key requirements for photo-detectors:

✓ coupling to LSO, LYSO crystals

- → sensitivity to blue light
- ✓ high number of photons
 - → dark rate and crosstalk are not an issue
- ✓ insensitivity to B field (inside NMR magnet)
- ✓ time resolution (TOF+PET)

Electron

Hole

Time Of Flight Positron Emission Tomography

Figure 1. Time-of-Flight PET Camera. Annihilation pho detected by a ring of scintillation crystals. With a conv PET camera, this localizes the position of the positron to segment joining the two crystals. With a TOF PET cam arrival time difference is used to further restrict the positio

PET + time information→ key for noise suppression

5625 pixels, MEPHI/Pulsar, B. Dolgoshein, Beaune 2005

large area $3x3mm^2$ SiPM directly coupled to $3x3x40 mm^3$ scintillator BC418 test with 3 GeV e- from DESY test beam \Rightarrow signal A ~ 2700 pixels \Rightarrow time resolution: σ (SiPM+BC418) = 33ps

New trends in PET calorimeters

High granularity and small calorimeter cells improve space resolution

Advantages:

- Lower dose to patient
- Faster scan / larger hospital throughput

➔ Silicon Photomultiplier replace PMT

- compact system
- low HV & cost

SiPM from Hamamatsu

Electron

Hole

- Good E res. → reduce Compton bg.
- Good t res. → reduce combinatorial bg.

time resolution for coincidence of two channels ~250 ps using SiPM readout and dedicated electronics possible

Test prototype detector for PET

Two detector heads mounted on a movable support for rotation scans

Image reconstruction of a point like source

➔ resolution ~2 mm FWHM

Electron

14-15 March 2011

Add to a commercial ultrasound assisted biopsy endoscope a miniaturized PET camera with Time of Flight capability with 200ps time resolution

Electron

Hole

200ps = 3 cm along the Line of Response (LOR)

Technology frontier

Extreme granularity

Fiber crystals: ϕ 350um – 3mm

LYSO:Ce

YAG:Ce YAG:Ce WAG:Ce William Yadis

LuAG:Ce Array

light yield (~70000 γ /511keV) and a very short rise (~30ps) and decay time (~20ns)

Improve space resolution using smallest crystals individually read out

Extreme integration

new generation of Geiger-mode avalanche photo-detector: integrates SPAD on CMOS

~50 μm pixel SPADs arranged in arrays with individual pixel readout

- O(100ps) time resolution on single photon

- dark count rate <100Hz

14-15 March 2011

Electron

Future trends

14-15 March 2011

Erika Garutti

38 / 42

Future trends

^^^^^^

PHILIPS How to replace old-fashioned PMT's?

- Make the SiPM digital
 - 1 pixel

- Increase integration
 - 2 x 2 pixel on one chip (die)

- Assemble arrays
 - 8 x 8 pixels on one PCB (tile)

Industry-academia matching event on SiPM and related technologies:

http://indico.cern.ch/internalPage.py?pageId=0&confld=117424

Electron

Future trends

PHILIPS

Digital Photon Counting – The concept

Intrinsically, the SiPM is a digital device: a single cell breaks down or not

digital SiPM (dSiPM)

Electron

Conclusions and Outlook

• SiPM is an innovative technology for photo-detection

- which opens revolutionary possibilities in detector development
- HEP has been the driving field for SiPM developments so far
- Medical detectors will probably be driving the future (cost issue)
- SiPMs may become the replacement of PMTs
- Digital readout is a further step in system simplifications
 - \rightarrow electronics, integration, low cost

Flectron