

Surface Damage in Silicon Devices

E. Fretwurst

University of Hamburg Institute for Experimental Physics

4. Detector Workshop of the Helmholtz Alliance "Physics at the Terascale"

Outline

- Introduction
- Properties of SiO₂ and SiO₂-Si interface
- Experimental Techniques
- Radiation Damage
 - MOS and Gate-Controlled Diodes
 - Strip sensors
 - MOSFET

Introduction

- What means surface damage? Damage effects induced in silicon-oxide layers grown on silicon wafers and at the SiO₂-Si interface by ionizing radiation (charged particles, X-rays)
- Where one has to take into account?
 - Silicon tracker in HEP Collider-Experiments (LHC, S-LHC, ILC,...), damage effects in sensors and electronics
 - Silicon Detector-Arrays in X-ray Free Electron Laser (XFEL) experiments sensors and electronics
 - Space experiments
- Typical dose values in different areas
 S-LHC: ~ 4.2 MGy at r = 4 cm for an integrated luminosity of 2500 fb⁻¹

XFEL: up to 1 GGy in about 3 years of continuous operation

Typical Devices under Study

Strip Sensor

AC pad - Bias rin

CMS Pixel sensor

AGIPD readout chip in 130 nm IBM CMOS

N-channel MOSFET

Properties of thermally grown SiO₂

Property	Value
Density	2.27 g/cm ³
Dielectric constant	3.4 (dry), 3.9 (H ₂ 0 ambient)
Refractive index	1.46
Dielectric strength	5 - 10×10 ⁶ V/cm
Energy gap	8.8 eV
Linear expansion coeff.	5 ×10 ⁻⁷ cm/K
Specific heat	10 ⁻³ J/(kgK)

Defects/Impurities in SiO₂

SiO₂-Si interface

Structural imperfections between Si bulk and SiO₂ layer \rightarrow interface states D_{it}

Example for structural model of (100) and (111) Si interface

 P_b center on (111) Si surface (detected by ESR): interface trivalent Si atom with dangling bond aimed into a vacancy in the oxide

P_{b0} and P_{b1} on (100) Si surface: chemically identical to Pb center but different configurations

D.K. Schroder, Semiconductor Material and Device Characterization, Jon Wiley & Sons, Inc., 2006

A: Acceptors, D: Donors

D_{it} represent a continuum of states in the band gap and is given in units (eVcm²)⁻¹

Classification of Interface Traps

Capture/emission of charge carriers \rightarrow Schockley-Read-Hall statistics

acceptors negatively charged if below E_F , otherwise neutral **donors** positively charged if above E_F , otherwise neutral

Shallow traps \rightarrow "fast" traps, responsible for frequency dependence of MOS C-V

Deep traps \rightarrow generation/recombination centers, responsible for surface current

Summary Oxide - Interface Charges

- Mobile oxide charge Q_m : positive ions e.g. Na⁺ (*negligible*)
- Trapped oxide charge Q_{ot}: defects in SiO₂ network (+ or -)
- Fixed oxide charge Q_f: traps near to the interface (trapped holes, Q_f positive)
- Interface-trapped charge Q_{it}: interface states with acceptoror donor-character, occupation with electrons/holes depends on Fermi-level E_F at the interface

Experimental Techniques

MOS capacitor

Capacitance-Voltage characteristics (**C-V**) at different frequencies \rightarrow information: flat band voltage V_{FB}, Q_f (N_f), Q_{it} (N_{it}) Thermally Dielectric Relaxation Current (**TDRC**) for different bias voltage \rightarrow information: D_{it}(E_t) distribution in the band gap

Other techniques not presented here: Conductance method $G(\omega)$, quasi-static C-V, Deep Level Transient Spectroscopy (DLTS), Electron Spin Resonance (ESR or EPR)

Gate controlled – Diode

Current-Gate Voltage characteristics for different junction bias voltage \rightarrow information: surface recombination velocity S₀ or D_{it} at mid gap

MOS Capacitor (ideal) n-type silicon

MOS Capacitor (real)

 n_i = intrinsic carrier concentration

Gate Controlled Diode

Surface current density J_s due to deep interface states N_{it}

Thermally Dielectric Relaxation Current TDRC

 V_{G2} < 0 V, depletion Heating up with constant rate → trapped electrons will be emitted, depending on D_{it}(E_t) and T → I_{TDRC}(T)

<u>At T = 30 K:</u>

Radiation Damage

Basic effects induced by ionizing radiation (X-rays, charged particles)

T.R. Oldham, Ionizing Radiation Effects in MOS Oxides, World Scientific, 1999

4th Detector Workshop of the Helmholtz Alliance, March 15-th 2011

Unrecombined holes

Buildup of $N_{f,ox}$

$$\Delta N_{f,ox} = D \kappa_g f_y f_{t,h} t_{ox}$$

$$D = \text{total dose}$$

$$\kappa_g = \text{e-h pair density per dose unit}$$

$$f_y = \text{fractional e-h yield}$$

$$f_{t,h} = \text{hole trapping efficiency}$$

$$t_{ox} = \text{oxide thickness}$$

Buildup of ΔV_{FB}

 $\Delta V_{FB} \propto t_{ox} \Delta N_{f,ox} \propto t^2_{ox}$

H.J. Barnaby, IEEE TNS 53, NO.6, 3103, 2006

X-ray irradiation at DESY DORIS III

Energy spectrum of photons: •Typical energy: 12 keV •Flux density: 1.08 × 10¹⁴ /(s • mm²)

Beam profile:

•Beam spot: 4 mm imes 6 mm

Dose rate:

- Beam centre: 200 kGy/s
- 2D scan: 500 kGy/scan

X-ray energy spectrum

Beam profile at beamline F4

Flat Band Voltage Shift

Flat band voltage shift:

- Buildup of fixed oxide charge Q_f and interface charge Q_{it} with dose
- Q_f > 0, trapped holes, shift to more negative V_G
- $Q_{it} > 0$, if interface states donors \rightarrow larger V_{FB} shift
- $Q_{it} < 0$, if interface states acceptors \rightarrow less V_{FB} shift
- C-V stretch out caused by Q_{it} (depends on D_{it}distribution in the band gap and the surface potential

ΔV_{FB} Dose Dependence

Flat band voltage shift with accumulated dose of 12 keV X-rays

- Strong increase up to about 1 MGy
- Maximal value between 1-10 MGy
- Decrease by about a factor of 2 at 1 GGy

How to disentangle fixed oxide charge and interface charge from measured MOS C-V

C-V Frequency Dependence

C_{it} and **R**_{it} depend on $D_{it}(E_t, \psi_s)$ and frequency ω , ψ_s = surface potential **C**_{it} ×**R**_{it} represent a time constant of the continuum of the interface traps → capture and emission of majority carriers of trap levels

Bulk series resistance R_s has to be included (high ohmic material) \rightarrow responsible for lowering C_{MOS} in accumulation at high frequencies

Depletion capacitance C_D and parallel conductance $1/R_D\;$ independent on ϖ if bulk traps can be neglected

C-V Hysteresis

Biasing into deep inversion

- \rightarrow high concentration of holes at the interface
- \rightarrow injection of holes into border traps
- \rightarrow increase of positive oxide charge (depends on injection time)
- → increase of flat band voltage shift

Interface Current – Dose Dependence

Recombination velocity $S_{0} \propto I_{s} / A_{gate} \propto D_{it,mid \; gap}$

Near mid-gap interface states responsible for surface (interface) current Strong increase up to 1 MGy Maximum between 1-10 MGy Extraordinary decrease for higher dose values, only \approx 20-30 % of max. value

Interface States D_{it}(E_t) from TDRC

TDR-current density $J_{TDR} = q_0 \cdot D_{it}(E_t) \cdot \beta \cdot f(T)$

 β =heating rate, f(T) function of capture cross section σ , thermal velocity v_{th} and density of states in the conduction band N_C

Transformation T \rightarrow energy E_c - E_t depends also on σ

D_{it} decreases between 1 MGy and 1 GGy

as expected from ${\rm I}_{\rm surface}$ and $\Delta {\rm V}_{\rm FB}$

Summary for Nox and Nit

Strip Sensors

p + on n Si strip sensor:

- $\cdot < 100 > n$ -substrate
- High resistivity: 2 5 k Ω ·cm
- Thickness: 285 $\pm 10\,\mu\text{m}$
- Active area: 0.62 cm²
- "Oxide": 300 nm SiO₂+50 nm Si₃N₄
- Strip length: 7.8 mm
- Strip pitch: 80 μm
- Strip number: 98

X-ray irradiation environments:

- @DESY DORIS III beamline F4
- Typical energy is 12 keV
- Dose rate in SiO₂: 200 kGy/s
- Doses: 1 MGy
- Irradiated sensors: sensor 1: irradiated without bias sensor 2: irradiated with 35 V bias (enough to depleted surface)

Strip Sensor

Characterization of p+ on n strip sensor up to 100 MGy:

Simulation

60

Fig 8. Simulated Si-SiO, interface depleted area

80 100 Bias voltage (V)

40

Influence of N_{ox} on Breakdown

Strip sensor: 200 μ m pitch, 20 μ m gap, 5 μ m Al overhang, 500 μ m thick 2D TCAD – simulation of E-field

Charge losses near to SiO₂-Si interface

Virtual voltage applied to electrode i (while the other electrodes grounded)

Collected Charge versus Position

Non-irradiated sensor

Irradiated sensor, D = 1 MGy

Charge collected at strip 1 and 2 summed up

Full charge collection

independent on bias voltage if sensor in steady state \rightarrow humidity \approx 45 % in dry condition \rightarrow electron or hole losses depending on V_{bias} ramping up or down Full charge collection only for V_{bias} >500 V V_{bias} <500 V \rightarrow strong electron losses if sensor in steady state otherwise electron losses lager

Physics origin of this effect so far unclear

P-Channel MOS-FET

In sub-micron CMOS-technology:

 t_{ox} (Gate) ≈ 2-3 nm → small V_{th} shift due to $\Delta V_{th} \propto t_{ox}^2$

but also degradation of channel conductivity \rightarrow decrease of gain factor

 \rightarrow increase of noise

31

$$I_{DS} = \mu_h \cdot \frac{W}{L} \cdot \frac{\varepsilon_{ox} \varepsilon_0}{t_{ox}} \cdot V_D \cdot (V_G - V_{th})$$

Threshold voltage shift ($\sim V_{FB}$): V_{th} = - 6.5 V before V_{th} = - 62 V after 2.8 kGy ⁶⁰Co

Summary

Surface damage effects:

Increase of oxide charge Q_{ox} (N_{ox}, V_{FB}, V_{th})

- saturation at few MGy, depends on t_{ox}
- impact on interstrip-capacitance due to e- accumulation layer
- charge losses near surface (low E-Field between strips)
- breakdown

Increase of interface charge Q_{it} (N_{it}, D_{it})

- maximal value reached between 1-10 MGy, decreases for D > 10 MGy
- impact on surface leakage current and noise
- frequency shift in MOS C-V
- gain-factor degradation in MOSFETs, etc...

Acknowledgements

Many thanks to all group members involved in "surface damage"

R. Klanner, H. Perrey, I. Pintilie, T. Pöhlsen, J. Schwandt, A. Srivastava, T. Theedt, J. Zhang

C-V Frequency Dependence

Inter-strip Capacitance

Results comparison for irradiations with and without bias:

Interstrip capacitance C_{int}

C_{int} decrease with surface depleted area S_{dep}

- Irradiation with bias → larger leakage current and inter-pixel capacitance!
- Tentative conclusion: more interface traps in the mid-gap were generated! (oxide charges and interface traps close to conductance band need to be confirm)

Surface charges depend on electric field during irradiation!

E. Fretwurst, Uni-Hamburg

Annealing

Annealing: Relevant for long-term behaviour (+ to understanding test measurements !) + help to understand physics of radiation damage

E. Fretwurst, Uni-Hamburg

4th Detector Workshop of the Helmholtz Alliance, March 15-th 2011

Activation energy and frequency-factor

LC dry \rightarrow humid \rightarrow dry

