Bulk defects (microscopic defects, measurement methods)

4th Workshop of the Helmholtz Alliance 15.03.2011 DESY Hamburg

Movie: Life of Brian

How do I cope with having 10 quadrillion particles thrown at me?*

*10¹⁶ fluence/cm² at 4 *cm high luminosity* LHC

UΗ

2

Outline

- Motivation
 - See lecture by M.Moll
- Radiation damage
 - Microscopic defects (changes in bulk material)
 - Macroscopic effects (changes in detector properties)
- Microscopic measurement techniques
 - TSC
 - DLTS
- Irradiation induced defects
 - With impact on the effective doping concentration
 - With impact on the leakage current
- Summary & outlook

Radiation exposure

Aim: find best material and geometry for high luminosity LHC applications

UH

Outline

- Motivation
 - See lecture by M.Moll
- Radiation damage
 - Microscopic defects (changes in bulk material)
 - Macroscopic effects (changes in detector properties)
- Microscopic measurement techniques
 - TSC
 - DLTS
- Irradiation induced defects
 - With impact on the effective doping concentration
 - With impact on the leakage current
- Summary & outlook

ж

Silicon

Diamond structure

Applications:

- Transistors (computer chips)
- Photovoltaic
- LCD' s
- Alloys
- Medical imaging
- X-ray diffraction
- Particle detectors...

Hamburg University 15.03.2011

UН

A. Junkes

"Physics at the Terascale"

Non Ionising Energy Loss \rightarrow bulk damage

Non Ionising Energy Loss \rightarrow bulk damage

Bulk damage

Radiation induced

Vacancies and Interstitials

Material impurities

Oxygen, Carbon, Phosphorus, Boron...

Some defects are mobile at room temperature...

Ш

9

💾 Hamburg University 15.03.2011

"Physics at the Terascale"

Bulk Damage

10

Motivation
 Radiation damage
 Techniques
 Depletion voltage
 Leakage current

Creation of defect cluster (E_{PKA}>5 keV)

Impact of defects on detector properties

Ш

Doping atoms are "defects"...

...with desired impact on the detector properties.

Doping atoms are "defects"...

...with desired impact on the detector properties.

Outline

- Motivation
 - See lecture by M.Moll
- Radiation damage
 - Microscopic defects (changes in bulk material)
 - Macroscopic effects (changes in detector properties)

• Microscopic measurement techniques

- TSC
- DLTS
- Irradiation induced defects
 - With impact on the effective doping concentration
 - With impact on the leakage current
- Summary & outlook

Sensor operation

Singnal generation

- Ionisation of depleted Si-bulk
- Generation of e⁻/h⁺-pairs
- Charge drift due to E-field
- Signal creation due to drift

Sensor operation

Singnal generation

- Ionisation of depleted Si-bulk
- Generation of e⁻/h⁺-pairs
- Charge drift due to E-field
- Signal creation due to drift

Singnal degradation

Loss of charge carriers due to

- decrease of free charges
- trapping of charge carriers
- noise increase due to current

Defects with impact on charge carriers are electrically active defects

Sensor operation

Singnal generation

- Ionisation of depleted Si-bulk
- Generation of e⁻/h⁺-pairs
- Charge drift due to E-field
- Signal creation due to drift

Singnal degradation

Loss of charge carriers due to

- decrease of free charges
- trapping of charge carriers
- noise increase due to current

Defects with impact on charge carriers are electrically active defects

υH

Marble Maze

Detection of bulk defects

Technique	Based on/ measures	Results	Limits/ drawback
Deep Level Transient Spectroscopy (DLTS)	Charge capture-emission/ capacitance transients	Defects properties and concentration	 Low density of defects Chemical nature (indirect)
Thermally Stimulated Current (TSC)	Charge capture-emission/ current	Defects properties and concentration	- Medium density of defects - Chemical nature (indirect)
Photoluminescence (PL)	Photon absorption-emission / luminescence	PL bands, defects ionisation energy	 Only for photo-active centers Chemical nature (only indirect)
Infrared Absorption (IR)	Excitation of vibrational modes of molecules by IR absorption / Absorption of IR energy	Defects chemical structure and concentration	 Large density of defects Electrical properties
Paramagnetic Resonance (EPR)	Zeeman effect and Spin resonance / microwave- photon absorption	Defects chemical structure and concentration	 Large density of defects Only paramagnetic centers Electrical properties
X-ray diffraction	Coherent interference/ Scattered intensity of X-ray beam	Atomic structure	 Only thin film/ nano structures Only for Low defect variety
Scanning probe microscopy (STM)	Quantum tunneling/ tunneling current	Atomic structure	 Sample preparation Large density of defects

No experimental technique provides all defects characteristics

Detection of bulk defects

Technique	Based on/ measures	Results	Limits/ drawback
Deep Level Transient Spectroscopy (DLTS)	Charge capture-emission/ capacitance transients	Defects pro-	oos y of defects ature (indirect)
Thermally Stimulated Current (TSC)	Charge capture-em ssi E e C current	and concentration	 Medium density of defects Chemical nature (indirect)
Photoluminescence (PL)	Photon absorption-emission / luminescence	PL bands, defects ionisation energy	- Only for photo-active centers - Chemical nature (only indirect)
Infrared Absorption (IR)	Excitation of vibrational modes of molecules by IR absorption / Absorption of IR en NO	Defects chemical Ormation Concentration	a brout ty of defects Dectrical properties
Paramagnetic Resonance (EPR)	Zeeman effect and Spin resonar ce / microway elect absorption	concentration	 Only paramagnetic centers Electrical properties
X-ray diffraction	Coherent interference/ Scattered intensity of X-ray beam	Atomic structure	Only thin film/ nano structures
Scanning probe microscopy (STM)	Quantum tunneling/ tunneling current	ot tried ye	 Sample preparation Large density of defects

No experimental technique provides all defects characteristics

Defect properties

Scockley-Read-Hall statistik

Occupancy of defect states with electrons or holes is determined by

capture

$$c_{n,p} \propto \sigma_{n,p} \cdot n, p$$

and emission
$$e_{n,p} \propto \sigma_{n,p} \cdot \exp\left(\pm \frac{E_t - E_C}{k_B T}\right)$$

Defect properties

 $\sigma_{n,p}$: e⁻, h⁺ capture cross section E_a: activation energy for ionisation N_t: trap concentration

Capture of electrons always combined with hole emission and vice versa

De- and recharging offers possibility to detect defects

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

Thermally Stimulated Current technique

- 2. Recording of charge emission $(e_{n,p})$ from filled traps during constant heating
- 3. N_t from integral of TSC-current

Single shot technique:

Filling of traps with charge carriers at low T (<30 K)
 →Filling (majority carriers with zero bias, majority and minority carriers by forward bias, light)

UΗ

Ш

"Physics at the Terascale"

Deep Level Transient Spectroscopy

Multi shot technique during T-scan:

- 1. Diode under reverse bias
- 2. Filling of traps with charge carriers at various T
- 3. Emission from filled traps \rightarrow change of capacitance
- Capacitance transients recorded as function of T
- Transient follows: $\Delta C = \Delta C_0 \exp(-e_n t)$
- Analysis from transient shape
- Concentration:

$$N_t \approx 2N_D \frac{\Delta C}{C_0}$$

Filling of minority carriers (DLTS)

- 1. Diode under reverse bias
- Filling of traps with forward bias (high current) 2.
- Emission from filled traps \rightarrow change of capacitance 3.

How connect bulk defects with sensor properties?

Hamburg University 15.03.2011

"Physics at the Terascale"

Annealing studies

Defect migration

Defect migration at room temperature
Acceleration of process by heating

- Annealing studies at low temperatures (T< 100 °C)

 Measurement of defect concentration and diode
 properties
 - Correlation of microscopic and macroscopic results
- → Identification of defects with impact on sLHC conditions
- \rightarrow Forcast changes of detector properties
- 2. Annealing at temperatures above 100 °C
 - Measurement of different materials
 - Correlation of defects with material impurities
- \rightarrow Identification of chemical structure of defects
- \rightarrow Extraction of defect properties

Шï

33

Understand correlation between microscopic and macroscopic effects

Outline

- Motivation
 - See lecture by M.Moll
- Radiation damage
 - Microscopic defects (changes in bulk material)
 - Macroscopic effects (changes in detector properties)
- Microscopic measurement techniques
 - TSC
 - DLTS
- Irradiation induced defects
 - With impact on the effective doping concentration
 - With impact on the leakage current
- Summary & outlook

ЩĽ

Depletion voltage

With particle fluence: 5000 $U_{dep} [V] (d = 300 \mu m)$ 1000 $N_{eff} \mid [10^{11} \text{ cm}^{-3}]$ 10^{2} 500 600 V type inversion 100 50 10^{1} 10^{14}cm^{-2} 10 5 10^{0} n - type p - type 10^{-1} 10^{0} 10^{3} 10^{-1} 10^{1} 10^{2} Φ_{eq} [10^{12} cm⁻²] R. Wunsdorf, PhD thesis 1992, Uni Hamburg Incident particle Incident particle n⁺-layer undepleted bulk

UН

$$V_{dep} = \frac{q_0}{\varepsilon \varepsilon_0} \cdot \left| N_{eff} \right| \cdot d^2$$

- Acceptors compensate original doping
- Type inversion from n- to p-type
- Increase of depletion voltage after SCSI
- → Signal loss

• Annealing studies show impact of high T maintenance times

Depletion voltage

With annealing:

UН

$$V_{dep} = \frac{q_0}{\varepsilon \varepsilon_0} \cdot \left| N_{eff} \right| \cdot d^2$$

- Acceptors compensate original doping
- Type inversion from n- to p-type
- Increase of depletion voltage after SCSI
- → Signal loss

• Annealing studies show impact of high T maintenance times

Depletion voltage

Defects with impact on N_{eff}

- Cluster defect E(30K) enhanced after protons
- Shallow donor E(30K) overcompensates deep acceptors

UΗ

Phosphorus and boron doping

Phosphorus acts as donor

- Adds electrons
- Called n-type material

• Adds holes

UΗ

• Called p-type material

Annealing behaviour of N_{eff}

2x10¹⁴ p cm⁻², Epi-St 75 μm (TSC)

Defect concentrations vs N_{eff} (C-V)

Concentrations from microscopic measurements reproduce C-V
Prediction of V_{dep} possible also for neutron & proton irradiation!

Ш

Application of annealing results

For an sLHC sczenario

 N_{eff} for n and p irradiation (CV) for Epi-Do

Improvement due to adaption of environmental conditions

Ш

43

Outline

- Motivation
 - See lecture by M.Moll
- Radiation damage
 - Microscopic defects (changes in bulk material)
 - Macroscopic effects (changes in detector properties)
- Microscopic measurement techniques
 - TSC
 - DLTS
- Irradiation induced defects
 - With impact on the effective doping concentration
 - With impact on the leakage current
- Summary & outlook

Change of leakage current...

Change of leakage current...

Metivation
 Radiation damage
 Techniques
 Depletion voltage
 Leakage current

Defects with impact on I_{leak}

Decrease of I_{leak} during annealing

60 % decrease of LC during 60 °C annealing
30 % decrease of LC during 200 °C annealing
Corresponding defect annealing:

• E4 & E5 at 60 °C & E205a between 140 °C – 180 °C

A. Junkes

→ Responsible defects E4 & E5 & E205a

Hamburg University 15.03.2011

UΗ

Ш

Corresponding defects from DLTS

• Radiation damage
 • Techniques
 • Depletion voltage
 • Leakage current

• Mention

E4/E5 and E205a create I_{leak}

Correlation between E5-defect and current found!

• Motivation • Radiation damage • Techniques • Depletion voltage • Leakage current

How can I imagine clustering effects?

Play Chargeball

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection
- With high current injection also the shielded core can be reached

Йř

Summary

- sLHC environment create defects in the Si crystal
- Defects may influence detector properties
- Methods like DLTS and TSC provide information about electrically active defects
- Combination of microscopic & macroscopic methods reveals defects with impact on sensors
- •Breakthrough in understanding the impacts of radiation induced defects on detector properties