requirements	mechanics	electronics	software	current status
	0000000 00	000 000 0000		

Mobile Flexible Gassystem status update for 4th Detector Workshop

Barthel Philipps Stefan Roth Achim Stahl Jochen Steinmann Jin Yao

III. Physikalisches Institut, RWTH-Aachen

17 March 2011

Helmholtz Alliance

requirements	mechanics	electronics	software	current status
	0000000 00	000 000 0000		

Outline

2 mechanics

- concept
- first tests

3 electronics

- concept
- temperature transmitter
- valve driver

4 software

WebGUI

requirements	mechanics	electronics	software	current status
	0000000 00	000 000 0000		

Summary on the requirements

System should be able to mix all common used gas mixtures.

Flexibility

is needed to adjust functionality and behaviour (pressure & flow) to different chamber types used (TPC, GMC, RPC, MSGC etc.)

Mobility

Use the **same** system both for development in the lab and for test runs at test beam centers. It should be transportable without much effort.

Safety

System must be consistent with the current safety norms and laws (mainly regarding operation with burnable gases)

requirements	mechanics	electronics	software	current status
	0000000 00	000 000 0000		

What is the system able to do? (or better what is planned)

- create various mixtures of three out of 8 gases
 Ar, CH₄, iC₄H₁₀, CO₂, Xe, He, CF₄, Air
 all most common drift gases could be mixed.
- in addition more gases (even some exotic ones and mixtures) could be used via conversion constants
- creation of mixtures from ppm to %-level
 - \Rightarrow Needed for testing the effect of contaminations on the detector.
- open, closed and halfopen operation mode
- analysis of the mixed drift gas
 - gas chromatography
 - $\bullet\,$ special analysis devices for $\rm H_2O$ and $\rm O_2$
 - further analysis devices (optional)
 - analysis of trace gases, very sensitive to small amounts
 - \Rightarrow analysis solution from atmospheric physics (CE DOAS)
 - gas monitor chamber: measurement of driftvelocity and gas amplification

requirements	mechanics	electronics	software	current status
	00000000 00	000 000 0000		

mechanical concept

by Iris von Knobelsdorff

requirements	mechanics ●0000000 00	electronics 000 000 0000	software 000	current status
concept				
basic elem	ents			

chamber
parameters:
• flow
• pressure
• mixture

operation

- without interruptions
- 24/7, but not the whole year. This means service interals are possible.

use of 4/2 way valves

- saves 2 values per loop connection \Rightarrow failsafe
- saves 1/3 of all connections \Rightarrow tightness

requirements	mechanics ००●००००० ००	electronics 000 000 0000	software 000	current status
concept				
4/2 way v	valve (Prototy	pe)		

development of 4/2 way value actuator

no commercial 4/2 way process value with actuator available. \Rightarrow development of own actuator for a 4/2 way hand value.

requirements	mechanics ooo●oooo oo	electronics 000 000 0000	software 000	current status
concept				
concept				

basic concept

closed loops, which can be connected with each other.

Gas is always circulating, even inside the loops

Loops

Each Loop represents an assembly group. Dividing the concept into modules rejected, because the number of connections is increasing \Rightarrow tightness. Each loop is intrinsically safe without power. It can be maintained during operation.

Integration of non Loop devices

Source and sink of the gas are not loop able, but it is possible to integrate them easily.

requirements	mechanics oooo●ooo oo	electronics 000 000 0000	software 000	current status
concept				
schematic	concept			

requirements	mechanics 00000000 00	electronics 000 000 0000	software 000	current status
concept				
concept II				

requirements	mechanics 000000●0 00	electronics 000 000 0000	software 000	current status
concept				

overview

11/31

requirements	mechanics oooooooo oo	electronics 000 000 0000	software 000	current status
concept				

3D sketch

status 15.03.2011

size

- about 80 imes 150 imes 180 ${
 m cm}^3$
- only mechanical part shown
- electrical rack missing $80 \times 50 \times 180 \ {\rm cm}^3$ will be attached to one unit

Maintenance

- all parts are easy accessable
- exchange / modification should be possible

requirements	mechanics	electronics	software	current status
	0000000 •0	000 000 0000		
first tests				

uncertaincies of the mixture

Example: Flow Mixing

gas	amount		6 l/h	30l/h	601/h	
Ar	95	±	0,051	0,074	0,051	%
CF_4	3	\pm	0,036	0,053	0,036	%
iC_4H_{10}	2	\pm	0,029	0,045	0,029	%

Uncertaincies are related to the maximum range of the used flowmeters. Due to this, there are some "regions" of total flow, where the error on the mixture is minimal.

improve with buffer

By using the buffer, it is possible to use the minimal uncertaincies.

These computations where derived from the datasheet of the MFCs.

requirements	mechanics	electronics	software	current status
	0000000 00	000 000 0000		

first tests

Status of the mechanical system

hardware selection

- almost all components selected and specified
- few components specified but not selected
- developing some solutions to get the perfect match
- a lot of work spent for safety issues dimensioning, ventilation, gas warning system, etc.

concept and 3D design

- flow diagram finished. Needs to be adapted to some changes because of other hardware
- 3D design study almost finished.
- Safety checks and calculations needs to be done. Many calculations depend on the mounting positions and sizes of the system.

requirements	mechanics 00000000 00	elect ronics ●00 000 0000	software 000	current status
concept				
electrical c	ontrol system			

requirements	mechanics 0000000 00	electronics O●O OOO OOOO	software 000	current status
concept				

development of own electronics

electrical concept

best suited solution for a system, which is that flexible. There is no such commercial solution available.

Even the costs per channel are much lower, because we pay only for those things, we really need. In commercial solutions, you pay for a lot of features, which we would never use.

interfaces

analog input industrial 4...20 mA current loop input.

digital output 5V TTL level

digital input OpenCollector output of device required, 5 V biased input module connection CAN-Bus: industrial use, cheap and easy accessable

requirements	mechanics 00000000 00	electronics OO● OOO OOOO	software 000	current status
concept				

Electronic Requierements are derived from the mechanical part

80 digital outputs

control system

- 120 digital inputs
- 48 analog 4...20 mA 12 bit inputs

Hardware amount

- 9 FC Flow Controller
- 1 FS flow sensor
- 3 NR non return valve
- 6 NV needle valve
- 3 OS other sensor
- 9 OV overpressure safety valve
- 1 PC pressure controller
- 17 PS pressure sensor
 - 2 PU pump
- 30 SV 2/2 way solenoid valve (normal close)
- 13 TS temperature sensor
- 5 TV 2/2 way solenoid valve (normal open)
- 21 XV 4/2 way solenoid valve
 - 3 YH 3/2 way hand valve
- 15 YV 3/2 way solenoid valve

In total the electronic must control ≈ 120 devices. Further 20 devices bring their own electronics, but they have also been integrated.

requirements	mechanics 00000000 00	electronics ○○○ ●○○ ○○○○	software 000	current status
temperature transmit	ter			
Temperati	uresensor			

$\text{PT100} \Rightarrow 4\dots 20\,\text{mA}$

converter from standard PT100 sensor to industrial interface

- 1 IC
- PT100
- diode 1N4148
- three resistors & capacitors

size of prototype: 40 \times 20 mm final version will be smaller

requirements	mechanics	electronics	software	current status
	00000000 00	000 000 0000		
temperature transmitter				
first tests				

sensor temperature was ambient temperature

The sensor was covered to protect it from air conditioner flow.

requirements	mechanics	electronics	software	current status
	0000000 00	000 000 0000		

temperature transmitter

first tests

noise (defined as $T_n - T_{n-1}$)

Measurement frequency was about 0,01 Hz. Sigma of 6,5 mK (!).

requirements	mechanics 00000000 00	electronics ○○○ ●○○○	software 000	current status
valve driver				
minimizing t	he heat em	nission		

Problem:

A normal value emitts up to 10 W. So it heats up to about $75\,^\circ\text{C}$ on its surface and only a few degrees less on its body.

How to minimize the heat dissipation?

Use of special valve driver. They reduce the avaraged current through the coils. But they also ensure that the valve switches by using one large pulse to open it, before applying the reduced current.

Implementation

 \Rightarrow mounting inside the valve plug. (as near as possible to the coil) But: only $25 \times 25 \text{ mm}$ with a central hole.

requirements	mechanics	electronics	software	current status
	0000000 00	000 000 0●00		

valve driver

results from a first test transient behaviour of valve driver

requirements	mechanics	electronics	software	current status
	0000000 00	000 000 0000		
valve driver				

results from a first test temperature increase of various duty cycles

temperature valve test

requirements	mechanics 00000000 00	electronics ○○○ ○○○ ○○○●	software 000	current status
valve driver				
Status of	the control sy	/stem		
analog inputs	5			
schemat	ic and PCB ready	for production		

• final review pending (some values missing)

digital I/O

- schematic done (if nothing changes the valve control)
- PCB needs final steps

Temperaturesensor & valve driver

- Prototypes already tested
- schematic & PCB layout done ready for production
- result of final tests pending

200	11110	mor	1+ C
- eu	LI II C	III CI	IL S

mechanics 00000000 00 electronics

software

current status

What about the software controlling the system?

concept

- Firmware for Mikrocontrollers
- Controlsoftware running on a PC based on liblab and subserver written in C++
- GUI with Webserver (same for remote & local usage)

liblab and subserver are DAQ & data distribution frameworks written at the 111. Physikalisches Institut B, RWTH Aachen University

requirements	mechanics ०००००००० ००	electronics 000 000 0000	software ●○○	current status
WebGUI				
Web-GUI				

Web GUI

- optimized for local touchscreen, but it can also requested with the same appearance via network.
- interaction with subserver and through this the devices to control the system
- written in HTML, PHP and AJAX (Javascript)
- every "stupid" untrained user should be able to operate the system via this GUI without half a year of training. You just have to "learn" one GUI, no matter, whether you are operating from local or remote site.
- very abstract design. The user must not know that valve A1X2SV controls the exhaust of the analysis loop.

requirements	mechanics 00000000 00	electronics 000 000 0000	software ○●○	current status
WebGUI				
Web-GUI				

Overview	ON Save Load	Set
Mix	Setting	Information
Purifier	Ar . 90	2.1 ber
Buffer	Ar . 5 degree	bar 2.5 60 bar degree
Chamber	Total Flow 5	2.5 60 bar degree
Analyze	About This is gas system for endource: Produced by Jin Yao, Physiti 30, RWTH	

example page of mixture control

requirements	mechanics 00000000 00	electronics 000 000 0000	software ○○●	current status
WebGUI				

Status of the software

concept

- the concept with many interfaces is defined.
 Only need to start programming when hardware has proceeded more.
- Started at both ends to speed up. Top (WebGUI) and bottom (device drivers) at the same time.
- have many snippets and short examples for many parts of the system.

status

- Started implementation and test of the CAN-Bus device driver. Firmware of Interface and PC implementation is working well.
- Dummy implementation of WebGUI almost done. Implementation of (dummy) functionality has been started.
- tested concept of calibration and conversion database

requirements	mechanics	electronics	software	current status
	0000000 00	000 000 0000		

current safety difficulties

safety

For use of burnable gases, there are very strict rules in Germany and also at CERN. Not easy to adapt the rules from Germany to this "small" project. The CERN rules are mainly based on these common ATEX rules.

solution

after talking to our local safety officer we developed a solution how we can handle burnable gases inside this system.

But there is a lot of calculations left, which must be correct.

operation permission

after the complete 3D design and selection of all parts, we will ask for the permission to use the system in Aachen and at CERN. This permit will be granted by the responsible safety officers.

requirements	mechanics	electronics	software	current status
	00000000 00	000 000 0000		

current status

already done:

- hardware-concept & electronic-concept
- selection of analysis devices

current work:

- 3-D design of hardware / PCB creation
- hardware / electronic dimensionings
- control software

ToDo:

- build mechanical and electronic stuff
- programming of Firm-& Software
- various tests of the whole system

requirements	mechanics	electronics	software	current status
	0000000 00			

by www.CartoonStock.com

There is much to do. Let's do it!

Are there any questions?

Thank you for your attention.