### The ATLAS TRT

### Two in One: Transition Radiation and Tracking

Adrian Vogel University of Bonn

2011-03-17

Terascale Detector Workshop, DESY

### **A Toroidal LHC Apparatus**



## **ATLAS Components**



### **Inner Detector – Layers**



### **Inner Detector – Numbers**

#### Pixel

Si pixels 50 μm × 500 μm

3 barrel layers 3 endcap discs 3 points per track

> 8 · 10<sup>7</sup> pixels 1.7 m<sup>2</sup> area

#### SCT

Si stereo strips 80 µm × O(5 cm)

4 barrel layers 9 endcap discs 4 points per track

4000 modules 61 m<sup>2</sup> area

#### TRT

straw tubes 4 mm  $\emptyset \times O(1 m)$ 

3 barrel layers 20 endcap discs 35 points per track

300 000 straws 15 m<sup>3</sup> volume

### **Inner Detector – Total**



## **Transition Radiation Tracker**

### Tasks of the Inner Detector

- measure paths (and momenta) of charged particles
- contribute to particle identification

### The TRT is a dual-purpose detector

- quasi-continuous tracking with straw tubes
- particle ID with the help of transition radiation

#### Outermost part of the Inner Detector

- located between Si strip detector and ECAL
- rather large: 0.7 m < r < 1.1 m, |z| < 3.4 m,  $m \approx$  1.5 tons

### The TRT can be used as an L1 trigger (for cosmics)

# **Other LHC Detectors**

### CMS

- has no counterpart to the TRT
- Si pixels  $\rightarrow$  Si strips  $\rightarrow$  ECAL  $\rightarrow$  HCAL  $\rightarrow$  muons

### ALICE

- TRT for pion rejection and fast triggering
- Si  $\rightarrow$  TPC  $\rightarrow$  TRT  $\rightarrow$  ToF  $\rightarrow$  MRPCs  $\rightarrow$  ECAL  $\rightarrow$  muons

#### LHCb

- straw tube device as Outer Tracker
- Si strips  $\rightarrow$  RICH  $\rightarrow$  trackers  $\rightarrow$  calo  $\rightarrow$  muons

![](_page_7_Picture_13.jpeg)

![](_page_7_Picture_14.jpeg)

### **TRT Straws**

### Composite material tube

- carbon, polyimide, aluminium, polyurethane
- $\bullet$  60  $\mu m$  thin wall, reinforced by 4 carbon fibre sticks
- on negative high voltage of approx. 1400 V

### Amplification wire inside the tube

- 30  $\mu m \oslash W$ , 0.5  $\mu m$  Au coating, glass joints in the middle
- must be circular, placed centrally
- on ground, connected to electronics

Basically a thin, long proportional counter

• gas gain around 30 000, continuously monitored

### **TRT Straws – Test Setup**

![](_page_9_Picture_1.jpeg)

![](_page_10_Picture_0.jpeg)

## **Transition Radiation**

- Relativistic particle travels across material boundaries
- Photons are radiated, strongly peaked forward (along track)
- Probability depends on  $m \cdot \gamma$ , highest for **electrons**
- Energy depends on difference of plasma frequencies, typically around 10 ... 30 keV (soft X-rays)
- Predicted by Ginsburg and Frank in 1945
- Experimental proof of principle in the 1970s
- Nowadays used in several particle physics detectors: ZEUS, ATLAS, ALICE, PHENIX, AMS, ...

![](_page_11_Figure_8.jpeg)

## **TRT Radiators**

Charged particles must traverse (many) boundaries

- surrounding gas: CO<sub>2</sub>
- radiators: polypropene, polyethene

Barrel region:

irregularly distributed PP/PE fibres

### Endcaps:

- $\bullet$  a dozen PP foils of 15  $\mu m$  in front of each straw layer
- $\bullet$  separated by PP spacer mesh of 200  $\mu m$  thickness

![](_page_12_Picture_9.jpeg)

## Straw Tube Gas – Good

Xe (70%)

transition radiation X-ray absorption (high Z)

CO<sub>2</sub> (27%)

- good drift properties, low longitudinal diffusion
- UV absorption, "Self-Quenched Streamer" mode

O2 (3%)

- stabilises operation above 2% (O₃ captures UV)
- does not affect performance below 3.5 ... 4%
- signal strength degrades only by O(10%)
- remember: drift distance is less than 2 mm

## Straw Tube Gas – Bad

No hydrocarbons

- ageing effects in high-radiation environment
- polymer deposits on the amplification wires

### No flammable gases

- safety concerns, especially in underground areas
- strict regulations for all large experiments

No CF<sub>4</sub>

- initially the preferred admixture for Xe/CO<sub>2</sub>, but:
- F radicals and HF attack glass joints and Au coating
- use it for occasional "cleaning runs" against deposits?

## **Gas System**

![](_page_15_Figure_1.jpeg)

• Losses of only 0.15 l/h

# **TRT Electronics**

### Custom-made electronics: ASDBLR + DTMROC

- amplification, shaping
- low threshold + high threshold
- time binning (3.125 ns sampling)
- pipelining, readout

### Ternary output: nothing – low – high

![](_page_16_Picture_7.jpeg)

# Tracking with the TRT

#### Drift time measurement

- reconstruct "drift circles", i. e. shortest distance from track to wire
- provides better spatial resolution than just the straw position
- *R*(*t*) relation initially determined from test beam measurements
- regularly adjusted with calibration analyses using known tracks

### Continuous tracking

• average of 35 points in  $r\varphi$ -plane for  $|\eta| < 2$  and  $p_T > 0.5$  GeV

![](_page_17_Figure_8.jpeg)

# **Tracking – Recent Results**

### R(t) relation

- raw drift time corrected for signal delays
- distribution fitted with third-order polynomial
- slightly different for endcaps due to B field orientation

Spatial residual

- here: 900 GeV,  $p_{T} > 1$  GeV
- has become even better in the meantime (mostly due to improved alignment)

![](_page_18_Figure_8.jpeg)

Terascale Detector Workshop, DESY

# Particle ID with the TRT

Electron/hadron discrimination for  $p = 1 \dots 100$  GeV

- electrons create transition radiation, other particles don't
- pion rejection of 100 for electron efficiency of 90%
- Čerenkov radiation or dE / dx wouldn't work so well here!

### Photons are detected

- Xe works as X-ray absorber
- electrons give significantly more "high-energy" hits (dE/dx plus photon energy)
- but: Landau tail of dE / dx distribution smears things out
  → no perfect separation

![](_page_19_Figure_9.jpeg)

## **Particle ID – Recent Results**

![](_page_20_Figure_1.jpeg)

Terascale Detector Workshop, DESY

# **Strengths and Weaknesses**

### Pros:

- large tracking device
- continuous tracking
- particle ID capabilities
- radiation hardness
- relatively low cost

Actually quite similar to a TPC!

### Cons:

- occupancy can become a problem at high luminosities
- limited spatial resolution in the  $r\phi$  plane
- almost no spatial information along z axis

Remember: the TRT is only one piece of a larger system

# **Physics Examples**

Find high- $p_{T}$  electrons (e / jet  $\approx 10^{-5}$ )

- with E/p calculation: S/B  $\approx 0.3$
- using transition radiation: S/B  $\approx$  6

Remove high-*p*T electrons as background

- Z  $\rightarrow$  e^+e^- + bremsstrahlung is background for H  $\rightarrow \gamma\gamma$
- using transition radiation: S / B  $\approx$  10

Robust tracking and pattern recognition

- precise (Pixel, SCT) plus continuous (TRT) tracking: good!
- TRT improves  $p_{T}$  resolution by a factor of 2 (formally)

### **Simulated SUSY Event**

![](_page_23_Figure_1.jpeg)

## Summary

### The TRT is a part of the ATLAS detector

- outermost piece of the Inner Detector
- straw-tube tracker, 2 m diameter, 6.5 m long

The TRT can achieve two goals at once

- tracking with O(35) points and O(150  $\mu m)$  resolution
- particle ID, particularly electron / hadron discrimination

The TRT has fulfilled all expectations so far

- good performance with cosmics, protons and heavy ions
- smooth operation despite the complex technical details

The TRT is ready for the 2011 data taking – now!

### References

Pictures taken from:

- atlas.ch (slides 2, 4, 6, 12, 24)
- ATLAS Public Results (slides 19, 21)
- ATLAS Technical Design Report (slide 20)
- CERN-THESIS-2006-025 (slides 9, 11, 17, 18)