
Detector Development strategy at European XFEL

Marco Ramilli for the EuXFEL Detector Group

PIER Workshop 'Joint DESY/UHH perspectives in detector research' Hamburg, 01.06.2023

Outline

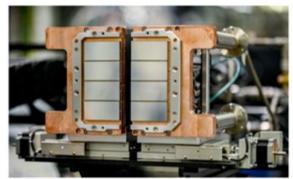
- Future detectors requirements
- Timeline and topics for development
- How we plan to be involved

Detectors for EuXFEL

Gotthard-II

Hard X-rays 6-25 keV

X-ray


energy

Soft

X-rays

ePix100 (MID, HED)

Jungfrau x 17 (all hard X-ray inst.)

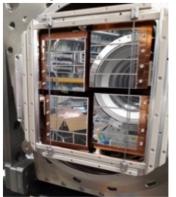
Noise: 80 e- (HG)

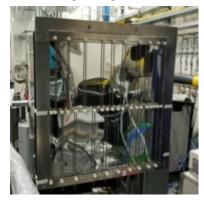
Dyn range: 10⁴ 12 keV ph

pnCCD (SQS)

Noise: 3 e-

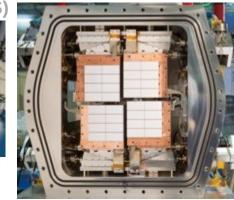
Dyn range: 1500-3000 1 keV ph


MCP + DLD (SQS, 2x SCS)


Single ph. sensitivity down to few hundred eV

Up to 50-60 ph/pulse

LPD (FXE) AGIPD (SPB/SFX, MID)

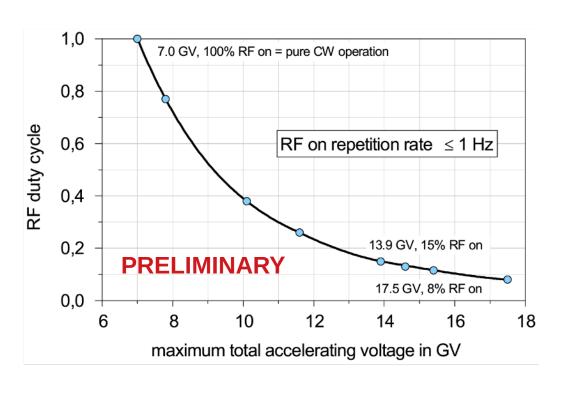


Noise: 350 e- (HG) Dyn range: 10⁴ 12 keV ph

Noise: 2010 e- (HG) Dyn range: 105 12 keV ph

DSSC (SCS, SQS)

Noise: 60 e-Dyn range: N x 256 ph @ 4.5 Mhz -

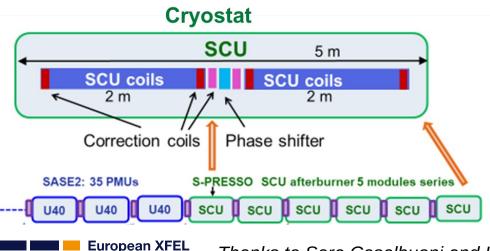

N x 512 @ f≤2.2 MHz $N \le 1$ for single ph sens.

10 Hz

Rate

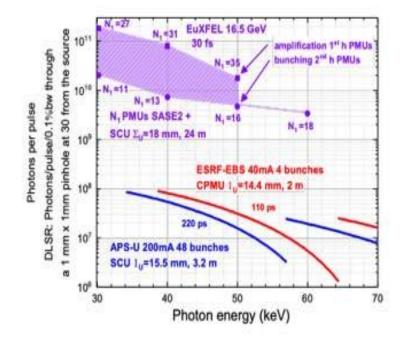
Facility developments: new time structure

Time structure not yet defined, some options under consideration



- Without major accelerator modifications
 - CW mode implies a max electron energy of 7 GeV (with respect to the 17.5 GeV of now)
 - energy can be gained by running in high duty-cycle mode, when RF is on for a fraction of time (the present burst mode corresponds to a duty cycle of 0.006)
- This choice impacts dramatically on detector design

Thanks to the accelerator team, in particular J. Sekutowicz and E. Vogel


Facility developments: SCU system

- Electron beam energy > 16.5 GeV
- Estimated range of photons per pulse achievable by tuning the SCU afterburner to amplify
 - the output of the fundamental of the PMUs
 - the bunching of the second harmonic of the PMUs
- Peak flux ~100 x higher than HE diffraction-limited SR sources
- Large dynamic range detectors needed!

Normalized emittance Initial energy spread Current 0.4 mm mrad 3 MeV 5 kA

The simulations do not consider wake fields and tapering. A flat top 3 fs bunch is considered

Thanks to Sara Casalbuoni and UND group of EuXFEL

Preliminary requirements from Scientific Instruments

Hard X-ray detector

Soft X-ray detector

Parameter	Target values	Target values
Sensitive Energy Range	3-13 keV with Si 13-50 keV with high-Z materials	0.25 - 3 keV, possibly higher
Dynamic range in photons	10⁴ 12 keV ph./pixel	10 ⁴ 1 keV ph./pixel
Noise (ENC)	< 300 el. rms.	< 30 el. rms.
Frame rate	4.5 MHz burst/long burst/CW?	4.5 MHz burst/long burst/CW?
Sensor type	2D pixelated	2D pixelated,
Pixel size	~ 100 x 100 μm ²	~100 x 100 μm²
Pixel count	Modular detector, min. module size tbd. Able to build up several Mpixel full-size detector	Modular detector, min. module size tbd. Able to build up several Mpixel full-size detector
Number of modules	Tbd, depending on module size	Tbd, depending on module size
Operating pressure range	Ambient or below 10 ⁻³ mbar	< 10 ⁻⁶ mbar

2030

development

development

How to get to the final requirements?

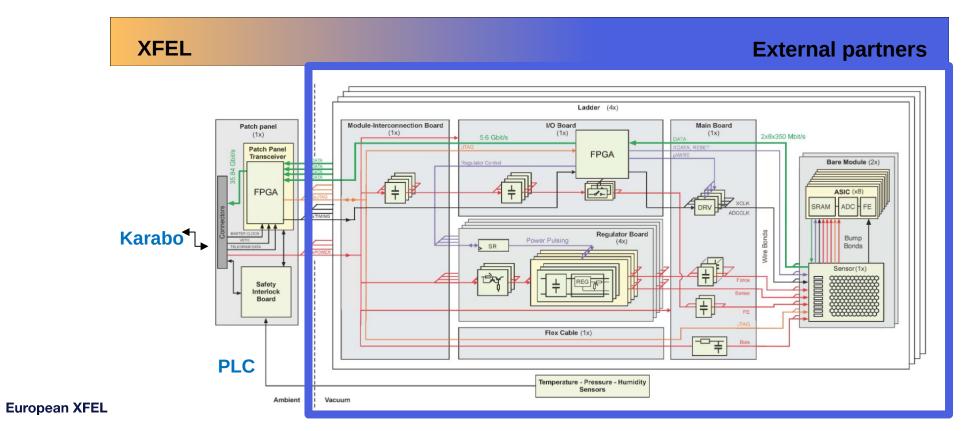
How do we get to the h/w definition and final requirements?

- Continue to evaluate scientific requirements
 - e.g. dyn. range at high energies
- Max repetition rate:
 - MHz rate is a must, continuous operation is not
 - duty cycle will be a machine parameter
- Fully integrate lessons learned from first systems in the new developments
 - Avoid multiple standards
 - Modular detectors
 - ...

Detector development

2023 Phase I – R&D 2026

Phase II – Development and Production 2030


Goal: 2nd generation of Large Area Pixel Detectors 2028-2030

- Phase I 2023 2025 (budget established to cover four areas of investigation)
 - Investigate candidate technologies
 - Work with external partners to establish clear areas of expertise
 - Identify areas of strategic collaboration and funding opportunities
 - Areas of investigation:
 - System integration, backend electronics
 - ► System integration, mechanics and cooling
 - ► High-Z materials
 - Sensor and ASIC
- Phase II 2024 2030
 - Establish concrete projects to build 2nd Generation detectors
 - Prototyping of selected technologies
 - Final designs
 - Construction and commissioning at Scientific Instruments

European XFEL

How we plan to be involved

- Our main expertise are in calibration, system integration and some part of mechanics
- Take a leading role concerning mechanics and backend
- Take a more active role for the front-end development (ASIC and sensor)
 - Need to retain know-how in house
 - ► Small number of people with overview of the systems developed

Mechanics

Conclusions

- Detector requirements are being defined
- Detector development funding has been established at the EuXFEL and first steps have been done to allocate it.
- Phase 1 of the development will serve to increase EuXFEL expertise in certain fields and to define collaboration with external partners in specific topics (ASICs, sensors...)

