The CMOS Strips Project

Naomi Davis on behalf of the CMOS Strip Detectors Project

1st PIER Workshop on Detector Research

June 1st

HEI MHOLTZ

Tracking with Silicon Sensors

How to detangle particle collision events?

"Pile-up" complicates things...

Image: ATLAS Experiment/CERN Run Number: 201289, Event Number: 24151616 Date: 2012-04-15 16:52:58 CEST

Tracking with Silicon Sensors

How to detangle particle collision events?

• Reconstruction of charged particle tracks

*High granularity

*High precision

*****Radiation hardness

*****Reliability and Longevity

ATLAS Experiment/CERN, https://cds.cern.ch/images/ATLAS-PHOTO-2020-018-1

Tracking with Silicon Sensors

The need for alternative silicon sensor designs

- Silicon sensors have become indispensable in high energy physics.
- They are...

... main tracking devices

... immense cost-driver

Alternative concepts?

Alternative vendors?

... only available from few foundries

CMOS Technology

A promising candidate

- CMOS imaging process
- Possible cost reduction
- Fast, large-scale production
- Wafer-scale industrial production
- Large vendor choice

DESY. | The CMOS Strips Project | Naomi Davis, 01/06/23

CMOS Technology

Silicon fabrication

• Detector-grade Silicon:

*Low impurity concentration

*Homogeneous dopant concentration

*High resistivity $3 - 5 \ k\Omega \cdot cm$

*Maximum crystal diameter: 8"

Beginning of Float-Zone Silicon Growth

By Marathoni62, CC BY-SA 3.0, https://en.wikipedia.org/wiki/Float-zone_silicon#/media/File:Si-crystal_floatingzone.jpg

Passive CMOS Sensor Design

Varying n-well characteristics

- n-in-p sensor, 150 nm LFoundry technology
- 150 ± 10 um thickness, 75.5 um strip pitch
- Varying n-well doping concentration and width

4.1 cm

Regular implant strip design

Low Dose (LD) implant strip design

L. Diehl et al., "Characterization of Passive CMOS Strip Sensors", NIMA, Vol 1022 (2022) https://doi.org/10.1016/j.nima.2022.166671

Passive CMOS Sensor Design

Stitched strip sensors

- Sensor is divided into different design blocks
- Design blocks are implemented individually
- Merging of design blocks by tiny overlap

ALiBaVa readout system

Source measurement with a β -Setup

- Charge collection measurement with ⁹⁰Sr source (MIP-like)
- Trigger by two scintillators in coincidence
- ALiBaVa system for data acquisition

Does stitching affect charge collection?

- Charge collection at different bias voltages
- Collected Charge: MPV of Landau-Gauss fit to signal distribution
- No significant difference between stitched areas

Measured signal in β -Setup (long)

L. Diehl et al., "Characterization of Passive CMOS Strip Sensors", NIMA, Vol 1022 (2022) https://doi.org/10.1016/j.nima.2022.166671

Does stitching affect charge collection?

- Charge collection at different bias voltages
- Collected Charge: MPV of Landau-Gauss fit to signal distribution
- No significant difference between stitched areas

Charge Collection in stitched areas (long)

L. Diehl et al., "Characterization of Passive CMOS Strip Sensors", NIMA, Vol 1022 (2022) https://doi.org/10.1016/j.nima.2022.166671

Summary & Outlook

What we have learned and what's next ...

- Stitching does not impact charge collection!
- Ongoing sensor studies:
 - TCAD Simulation, electrical characterisation, TCT,

irradiation campaigns, Test Beam measurements

- New sensor submission in discussion
- Particle physics and medical applications

Naomi Davis

naomi.davis@desy.de

Deutsches Elektronen-Synchrotron DESY

Backup

ATLAS Experiment Event Display $Z \longrightarrow \mu\mu$

High pile-up environment in 2012

- Collision energy of 8 TeV
- Z boson event in the dimuon decay
- 25 reconstructed vertices
- \bullet track $p_{\scriptscriptstyle T}$ threshold is 0.4 GeV
- track requirements: 3 Pixel and 6 SCT hits
- Vertex reconstruction: tracks with $p_{\tau} > 0.4 \text{ GeV}$

ATLAS Experiment, "*ATLAS Stand-Alone Event Displays*", https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayStandAlone#2012_Z_mu_mu_event_with_high_pil

Silicon Ingot Production

Float-Zone Technique

- mono-crystalline Si seed crystal + poly-crystalline Si ingot
- RF coil melts region of poly-silicon
- Cools down to mono-crystalline silicon
- RF coil and melted zone move along the ingot
- Impurities gather near crystal end

Microchemicals GmbH, "Silicon Ingot Production: Czochralski- and Float-Zone Technique", https://www.microchemicals.com/products/wafers/silicon ingot production.html

Poly-Si

Requirements for future Si tracking detectors in HEP

293	
PCF	Material budget
bannagel,	Single-point reso
	Time resolution
	Granularity
S.	Radiation tolerar

	Lepton Colliders	(HL-) LHC (ATLAS/CMS)
Material budget	< 1% X ₀	10% X ₀
Single-point resolution	≤ 3 µm	~ 15 µm
Time resolution	~ ps – ns	25 ns
Granularity	< 25 µm x 25 µm	50 µm x 50 µm
Radiation tolerance	< 10 ¹¹ n _{eq} / cm ²	O(10 ¹⁶ n _{eq} / cm²)

CMOS Imaging Technology

- CMOS: Complementary Metal Oxide Semiconductor
- conversion of photons to electrons
 - Image creation in digital cameras
- Production with photolithography
- Integration of n-channel (NMOS) and p-channel (PMOS) FETs

Canon, "See New Possibilities in 120 MP Resolution", https://canon-cmos-sensors.com/canon-120mxs-cmos-sensor/

Besson, A. et al , "From vertex detectors to inner trackers with CMOS pixel sensors", Nucl. Instrum. Methods Phys. Res., A 845 (2017) 33-372 (2022) https://doi.org/10.1016/j.nima.2016.04.081