TEMPUS: a Timepix4-based detector system for Photon Science

J. Correa, A. Ignatenko, D. Pennicard, S. Fridman, S. Lange, H. Graafsma – DESY S. Smoljanin, J. Lange, J. Schmehr, H. Klink, A. Beckmann – X-Spectrum GmbH

> Developed by CERN, Nikhef and IFAE on behalf of Medipix4 collaboration – TSMC 65nm

Timepix4v2 received from foundry in Sept 2021

```
Photon counting and frame readout
(like Medipix3)
```


Frame readout

- 40 kHz frame rate CRW (8 bit depth)
- $\sim 4x10^6$ counts/pixel/s

> Developed by CERN, Nikhef and IFAE on behalf of Medipix4 collaboration – TSMC 65nm

Timepix4v2 received from foundry in Sept 2021

~ 4x10⁶ counts/pixel/s

> Developed by CERN, Nikhef and IFAE on behalf of Medipix4 collaboration – TSMC 65nm

Timepix4v2 received from foundry in Sept 2021

Time-stamping and event-by-event readout (like Timepix3)

 $55 \,\mu m$ pixels

- Event rate: $\sim 10^9$ events/s in 512 x 450 pixel chip
- Up to 150 ps RMS time resolution (sensor dependent)
- ~ 2 keV energy resolution

> Developed by CERN, Nikhef and IFAE on behalf of Medipix4 collaboration – TSMC 65nm

Timepix4v2 received from foundry in Sept 2021

Specifications: Timepix3 vs. Timepix4

			Timepix3 (2013)	Timepix4 (2019/20)	
Technology			IBM 130 nm – 8 metal	TSMC 65 nm – 10 metal	
Pixel size			55 x 55 μm	55 x 55 μm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable (TSV) 512 x 448	35
Sensitive area			1.98 cm ²	6.94 cm ²)
Readout modes	Data driven (tracking)	Mode	ToT and TOA		
		Event packet	48-bit	64-bit	
		Max rate	< 43 Mhits/cm²/s	357.6 Mhits/cm²/s	
		Pix rate equiv.	1.3 kHz/pix average	10.8 kHz/pix average	οχ
	Frame Based (imaging)	Mode	Count: 10 bit + iToT	Count: 8 or 16 bit CRW	
		Frame	Zero suppressed (with pix addr)	Full frame (no pix addr)	
		Max count rate	82 Ghits/cm ² /s	~ 800 Ghits/cm²/s	10 x
		Max frame rate	N/A (worst case: 0.8ms readout)	80 kHz CRW	
TOT energy resolution			< 2 keV	< 1 keV	2 x
Time resolution			1.56 ns	~ 200 ps	8 x
Readout bandwidth			≤ 5.12 Gbps (8 x 640 Mbps)	≤163.8 Gbps (16 x 10.2 Gbps)	32 >
Target minimum threshold			< 500 e ⁻	< 500 e ⁻	

Ion detection (Controlled Molecule Imaging)

Thanks to Melby Johny, Sebastian Trippel, Hubertus Bromberger, Jochen Küpper

Ion detection (Controlled Molecule Imaging)

Thanks to Melby Johny, Sebastian Trippel, Hubertus Bromberger, Jochen Küpper

Coulomb explosion imaging of Pyrrole

~2 ns (std dev) time resolution

Jonathan Correa | TEMPUS, a Timepix4-based detector system for Photon Science | PIER – Hamburg 2023 | Page 9

X-ray photon correlation spectroscopy (XPCS) at P10

> Fluctuation of speckle pattern over time reveals dynamics of sample

- At PETRA-IV, XPCS could reach 100 ns time resolution!
- > Typical experiment has $\sim 2 \times 10^7$ hits/s in detector

Thanks to Fabian Westermeier, Ruth Livingstone, Michael Sprung

DESY single chip prototype

- > Single-chip Timepix4 board connected to offthe-shelf Xilinx board
 - Zynq Ultrascale+ with FPGA fabric and 4core CPU
- Parallel readout of 16 high-speed links from chip, each up to 5 (or 10) Gbit/s
 - Specialised transceivers on Zynq
- > Daughterboard offering 2 x 100 GBE links over "Firefly" optical cable
 - Challenge of dealing with ~ 160Gbits/s

Current status – readout development

- > Data read out over the control link
 - Example first image taken using a 55Fe source and a DESY logo target
 - Limited to ~ 5000 hits/second
- > High speed data links already operational
 - Real data transfer tests planned upcoming days
- > Basic software for taking data
 - Remotely connect to Zynq and control from Python console
 - CMI already working in a Pymepix implementation
- > External triggering is operational
 - Different triggering schemes are being implemented
- > Dummy data transfer over 100 GBE links

Row

Data reception and processing in PC

> Started work with Xilinx FPGA accelerator cards

- Data reception with 2 x 100 Gigabit Ethernet
- Buffering in high-bandwidth memory
- Data correction in FPGA fabric
 - Programming in C++ (Xilinx High Level Synthesis)
- PCIe4.0 transfer to server PC
- Started work on data reduction algorithms throught machine learning:
 - Talk later today by Vahid Rahmani

Outlook: multi-chip, multi-module systems

> Goal – large, continuous detector area

- > Tileable building block: 3-chip module
- > Readout board with Zynq Ultrascale+ SoC
- > Ultimate goal TSVs to eliminate wire bonds
 - TSV run started at Fraunhofer IZM (Berlin)and LETI (Grenoble) by Medipix4 collaboration

3-chip detector head 1344 x 512 pixels

Outlook: multi-chip, multi-module systems

> Improved 4-side butting with Through Silicon Vias (TSVs)

- Full chip surface is covered with pixels
- Rerouting in metal layers creates space for periphery
- Improved TSV landing pads, redundant inputs, extra power TSV connections in center of chip

Conclusions

- Current LAMBDA systems ~ 2 kHz frame rates and large areas
- Current Timepix3 systems ~ 5ns time resolution with limited hit rate
 - Suitable for CMI and proof-of-principle work at PETRA III

Conclusions

- Current LAMBDA systems ~ 2 kHz frame rates and large areas
- Current Timepix3 systems ~ 5ns time resolution with limited hit rate
 - Suitable for CMI and proof-of-principle work at PETRA III
- > We are developing TEMPUS using Timepix4
 - Improved photon counting and time stamping modes:
 - Higher frame rate
 - Hit rate compatible with more PETRA experiments
 - Much higher time resolution possible

Conclusions

- Current LAMBDA systems ~ 2 kHz frame rates and large areas
- Current Timepix3 systems ~ 5ns time resolution with limited hit rate
 - Suitable for CMI and proof-of-principle work at PETRA III
- > We are developing TEMPUS using Timepix4
 - Improved photon counting and time stamping modes:
 - Higher frame rate
 - Hit rate compatible with more PETRA experiments
 - Much higher time resolution possible

Jonathan Correa | TEMPUS, a Timepix4-based detector system for Photon Science | PIER – Hamburg 2023 | Page 19

Time resolution for XPCS

- If speckles are spread across multiple pixels, we could in principle find autocorrelations down to 10 ns timescales
- > Otherwise, limited to ~350 ns recovery time

Pixel (1,1) Energy ~8 keV Time 10 ns

Pixel (2,2) Energy ~8 keV Time 20 ns

X-ray pump probe experiments

> Could continuously record photon hits with 10 ns bunch spacing

> Data rate can be kept down by selecting useful signal

Electronic shutter selects time window

Pixel masking can create arbitrary regions of interest

X-ray tube pump-probe experiments with Timepix3 at Nanolab

- > MgO sample probed with 1W laser pulses measure changes in peak amplitude
- > 1 hr 40 mins of X-ray tube data, binned to 10 ns
- > Thanks to Simon Chung and Vedran Vonk

