Introduction to MicroTCA.4

PIER Workshop 2023

Cagil Gumus Hamburg, 01.06.23

Partnership of Universität Hamburg and DESY

What is MicroTCA

- It is an open standard, embedded computing specification.
- Specification is written by **PICMG** (PCI Industrial Computer Manufacturers) Group:
 - nonprofit consortium of companies and organizations
- Defines **fully** and **non-redudant** system configurations
 - Serviceability, Availability \rightarrow up to 99.9999% uptime (six-nines) \rightarrow 31.56 seconds downtime in a year
- **Power budgeting** and **Hot Swap** Capabilities
- Comes with complete component and system management that allow failure detection and isolation
 - Reliability, availability and serviceability (RAS) is the main focus for MicroTCA systems
- -TCA: Telecommunications Computing Architecture

History of MicroTCA

- ATCA Crate: MicroTCA has evolved from ATCA (AdvancedTCA) Main motivation of MicroTCA: - 'Lightweight' version of ATCA - Plug the AMC cards directly on a backplane
- AMC Cards can be used on both systems.
- ATCA is more power-hungry. Focuses more on telecommunication industry.
- MicroTCA can be in a smaller form factor.

Why DESY loves MicroTCA?

- DESY was designing the next gen. linear particle accelerators. (FLASH/E-XFEL)
 - Existing solution: Pizza-boxes, VME based crates..
 - Need for High Speed IO, RF signal processing, Redundancy
 - Remote maintenance capabilities needed
- Open Standard! No reliance on a particular company.
 - Make collaboration easier between different facilities
- Only missing part: Back connectivity for the MicroTCA crate → MicroTCA.4 is born
 - Rear-Transition Module (RTM) gets introduced
 - Allocate dedicated ports for triggering/synchronization etc.
 - RF signal integrity was crucial

The building blocks of MicroTCA

MicroTCA Crates

The trade off between functionality – redundancy – reliability

1U MicroTCA.4

- Integrated eMCH
- 2x Double Mid-Size AMC slots w/ RTM
- 2x Single Mid-Size AMC slots •
- Integrated 400W PSU
- No redudant part

3U MicroTCA.4

٠

٠

٠

- 4x Double Mid-Size AMC slots w/ RTM
- 1x Double Mid-size AMC slot
 - 1x Double Full-size AMC Slot •
- Discreete PSU
- No redudant part

5U MicroTCA.4 (Cube)

- 6x Double Mid-Size AMC
 slots w/ RTM
 - 1x Double Full-size MCH slot •
 - 1x Double Full-size AMC Slot •
- Discreete PSU
- No redudant part

9U MicroTCA.4

- 6x Double Mid-Size AMC slots w/ RTM
- 1x Double Full-size MCH slot
- 1x Double Full-size AMC Slot
- Discreete PSU
- Redudant MCH + PM
- RF Backplane capable
- JTAG Switch Module available

AMC + RTM

AMC + RTM

• AMC:

- Carries mostly the 'digital logic'.
- Many COTS components available
- Can be single or double width
- RTM
 - Extension of the connected AMC
 - Big dependency on the application (in-house development)
 - RF Front ends, CPUs, GPIO ...
- RTM is the subordinate of the AMC in terms of management
- AMC card gets connected to the crate via AMC-Backplane connector
- RTM and AMC connects through **Zone 3** connector

Power Limit: AMC + RTM < 80W

AMC Examples

- A/D & D/A Converters
- CPU
- FMC Carriers
- Timing Boards
- GPUs

...

۰

- Storage (eg. SSD via SATA)
- Network Interface

Concurrent AMC-CPU

DAMC-FMC2ZUP from MicroTCA Technology Lab

MicroTCA Carrier Hub (MCH)

- Main **authority** of the crate
- Bare minimum functionality;
 - Switch Fabric
 - Remote Control and Management Logic
- Additional functionalities;
 - Provide clocking functionality
 - Fat Pipe Switch (PCIe)
 - JTAG Connectivity to the backplane
- Can be 'embedded' inside the backplane. (Seen on smaller crates)
- Zone 3 Connectivity exists. (eg. MCH-RTM used as CPU)

Putting Everything Together

'The Naked View'

AMC-Backplane

The AMC-Backplane

- Strict definition of how each port can be used.
 - It is important for interoperability!
- Protocols that can be seen on AMC-Backplane
 - Management (IPMI)
 - PCIe / SRIO / 10/40GbE
 - Point-to-Point Links (using FPGA Transceivers
 - Timing/Synchronization Mesh Topology (MLVDS)
 - JTAG / Clocks etc.

'Typical' Application using MicroTCA.4

- Fast Feedback:
 - RF
 - Movement control (Motor / Piezo)
 - Laser Synchronization
- Data Acquisition
 - DAQ systems for RF, Camera,
 - Diagnostic systems
- Machine Protection systems
- Timing

. . .

.

• Data Aggregation

Usually FPGAs (inside the AMCs) are used for fast control, CPUs are used for slow monitoring/control

How DESY can help you with MicroTCA

- DESY has been supporting MicroTCA ecosystem:
 - MicroTCA Workshop
 - HW/FW/SW development
 - Training (Contact: Me!)
- We (MSK Group of DESY) are developing open-source tools that meant to be used with MicroTCA systems because we believe in Public Money, Public Code
- Open-source FPGA Framework and BSPs
 - https://gitlab.desy.de/fpgafw
- Open-source C++ Framework for software
 - https://github.com/ChimeraTK

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron

Cagil Gumus (CJ) MSK- Firmware Team cagil.guemues@desy.de

www.desy.de