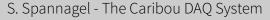


https://gitlab.cern.ch/caribou

Caribou*

A versatile data acquisition system for silicon detector prototypes

Simon Spannagel, DESY FH-ATLAS

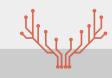

for the Caribou Developers & Users @ DESY

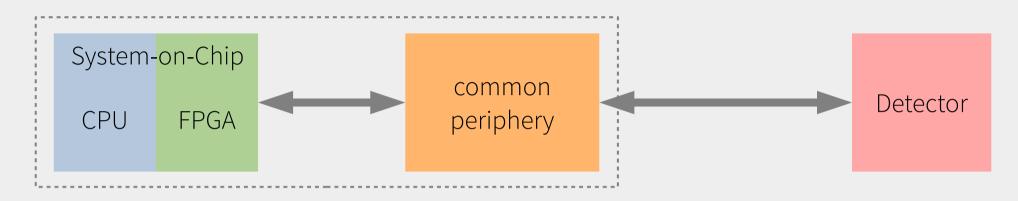
Joint DESY/UHH perspectives in detector research 01 June 2023

Motivation

- Many different silicon detector technologies under investigation Tangerine, ECFA DRD3, CLICdp study, ATLAS ITk prototypes, RD50...
 - Similar concept: readout, control, powering for most silicon pixel detectors
 - Differences in voltage levels, number of channels (data/voltage) or protocols
- Often development of new detector-specific DAQ for every prototype
 - Time-consuming process: developing & debugging HW/FW/SW
 - No innovative functionality compared to other systems

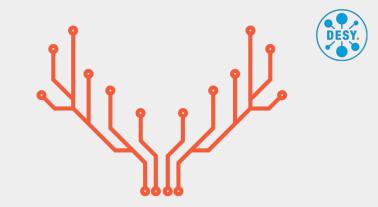
- A versatile DAQ system can significantly reduce time for development
 - Few changes/FW modules to write, large parts of system well tested
 - Cheaper than many systems designed from scratch





Data Acquisition for Generic Detector R&D

• Generic R&D requires flexible DAQ system, minimal effort for supporting new prototypes


- Using System-on-Chip devices to combine
 - Programmable logic (PL) FPGA fabric for detector control, data handling
 - Processing system (PS) CPU for data acquisition, user interface, full Linux system
- Custom-designed board with commonly used periphery components: voltage regulators, ADCs, LVDS connections, pulse generators, clock generator, TLU interface

The Caribou Data Acquisition System

• Open source hardware, firmware and software for laboratory and beam tests

- Goal: Provide a versatile DAQ system which
 - minimizes device integration effort
 - reduces time to get first data from a new detector

• Developed & maintained by collective effort from:

S. Spannagel - The Caribou DAQ System

System Overview

SoC PS processor runs Linux, user connects via ssh / Ethernet
 SoC PL runs detector control and data processing

Chip board

• **Periphery board** provides physical interface between SoC and detector

- Application-specific chip board:
 - Detector
 - Passive components
- No additional DAQ PC required!

Periphery CaR board

Ethernet

SoC board

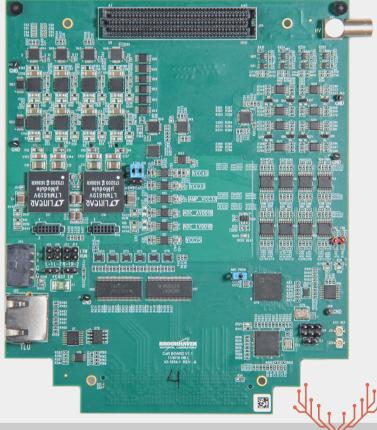
(optional) FMC cable

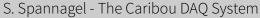
Power supply

The Hardware: SoC Evaluation Board

• Based on Intel Xilinx Zynq series

- PS (embedded ARM CPU) runs full Linux operating system
 - Standalone machine, connect to via Ethernet (ssh)
 - Runs DAQ software (Peary)
 - Allows to run data analysis (quality monitoring) locally
- PL runs custom firmware blocks for data processing, detector control
 - Interface between FPGA fabric and CPU available
 - Firmware for signalling & lower layers of communication protocols
 - Possibility to (pre)process data in hardware

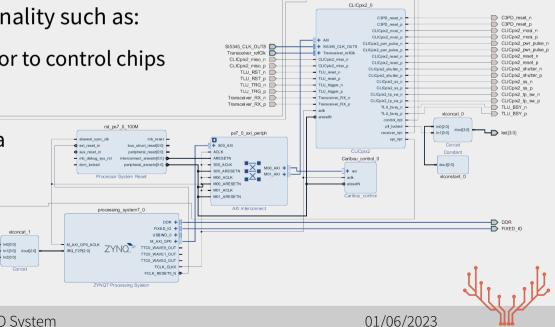

The Hardware: Control and Readout Board


- Provides physical interface from the FPGA/SoC to the detector chip
 - Commonly used components such as voltage & current sources, clock generators, biases...
 - adjustable power supplies with monitoring (0.8 3.6 V, 3A) 8
 - adjustable voltage references (0 4 V)32
 - adjustable current references (0 1 mA) 8
 - voltage inputs to slow (50 kSPS) 12-bit ADC (0 4 V) 8
 - analog inputs to fast (65 MSPS) 14-bit ADC (0 1 V) 16
 - programmable injection pulsers 4
 - full-duplex high-speed GTx links (<12 Gb/s) 8
 - 17 LVDS links (bidirectional)

10/14 output and input links, adjustable level (0.8 – 3.6 V)

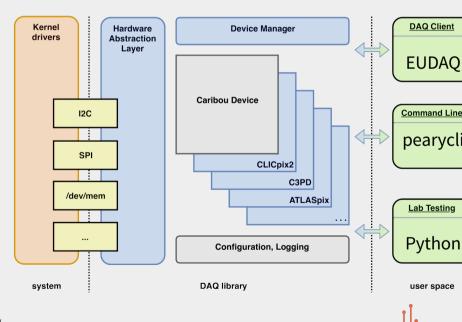
Programmable clock generator,

External inputs for HV, clock reference, trigger



The Firmware

DESY.


- Based on combination of custom Caribou modules and standard Xilinx IP cores
 - Provides an interface between CPU (SW) and a detector (HW)
 - Modules are connected to CPU through AXI bus, direct mapping of registers
- Caribou modules provide common functionality such as:
 - Highly-configurable pattern/wave generator to control chips
 - Time-stamping for different signals
 - Generic ring buffer for timestamp and data
- Adding new detector-specific modules for data transfer, detector control

The Software Stack

- Custom Yocto-based Linux distribution
 - Industry-standard OpenEmbedded build system for embedded devices
 - Custom Yocto layers (**meta-caribou**) with our software
- Peary* DAQ Software
 - Hardware Abstraction Layer (HAL)
 - Functions to control CaR board
 - Device management
- Various user interfaces available
 - Command line interface (CLI)
 - Client interface for integration with other systems
 - Python interface for scripting

* subspecies of caribou found in the High Arctic islands of Nunavut and the Northwest Territories in Canada

S. Spannagel - The Caribou DAQ System

Example: Integration at DESY-II Testbeam Facility

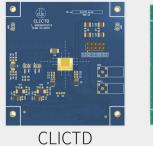
• Hardware

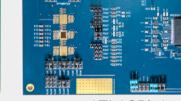

Periphery board comes with interface for trigger logic

- Firmware supports different triggering modes,
 - flexible synchronization with reference devices (beam telescopes, trigger scintillators, ...)
- Software Integrated with DAQ Control System
 - Works for all prototypes!
 - Direct integration with analysis software
- Successfully operated at

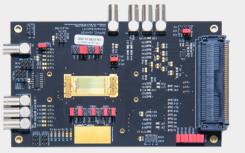
11

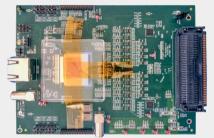
- CERN SPS with CLICdp Timepix3 Telescope, ACONITE Telescope ...
- DESY with DATURA Telescope, Timepix3, TLU, ...





Supporting Many Devices





ATLASPix2

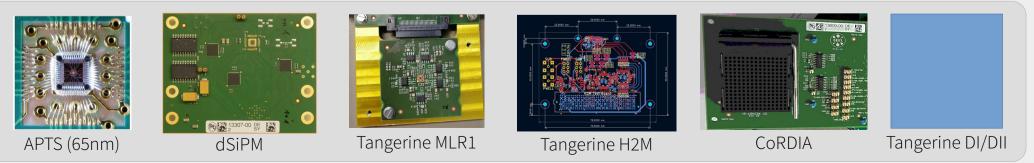
-

ATLASPix

H35Demo/FEI4

RD50-MPW1

RD50-MPW2


RD50-MPW3

FASTPIX

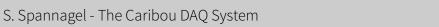
DPTS (65nm)

S. Spannagel - The Caribou DAQ System

The Next Generation: Caribou 2.0

- Next version of system already currently under development
 - System-on-Module (SoM) platform based on Zynq UltraScale+
 - Replace evaluation board + Carboard with a single custom carrier board
 - → Reduced cost and improved performance
 → Making system independent of evaluation board supply
- Ongoing hardware design effort by Carleton University / BNL / ORNL
 - Pre-prototype carrier board from BNL with full digital design ready
 - Analog resources & design features currently being iterated
 - Carboard 2.0 design in progress, analog/power circuits well progressed
- Aiming for first prototypes by Q3 2023

Enclustra Mercury+ XU1 SoM



Pre-prototype for Caribou 2.0 @ BNL Digital design only

Summary & Outlook

- Caribou is a versatile DAQ system for silicon detectors
 - Reduce required design/production effort for DAQ systems of new prototypes
 - Provide flexible, prototype-independent integration to external systems
- Immensely profiting from Caribou v1.4 on Campus Bahrenfeld
 - Six DESY prototypes by different groups, integrated, minimal effort on DAQ building
 - Has show to be efficient approach to provide flexible DAQ for early-stage detector prototypes
- Next-generation Caribou 2.0 in development
 - Integrated System-on-Module approach, base board currently under design
 - Continued DESY involvement in: common FW module development, OS stack support, Peary software development

