Detector simulations
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Motivation for simulations

* A way to understand and predict
sensor behaviour

* Computing power is relatively
cheap nowadays

— Simulations are cheaper and faster
than prototype production

* A combination of detailed
simulations and prototype testing
can be used to efficiently guide the
way in sensor developments
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https://indico.cern.ch/event/1058977/contributions/4636892/attachments/2465983/4228834/Simancas_BTTB10_V1.pdf

Silicon sensor simulations

* Goal: accurate simulation of the charge collection
behaviour in the sensitive volume
— Enables prediction of sensor performance (e.g. resolution,

efficiency)

— Done by simulating the movement of electron-hole pairs
created by an interacting particle

* Issue: The access to manufacturing process information
may be very limited X (pixels)

Simulated motion of individual electrons and holes deposited

— The Tangerine project for example (presented this mornin ] . . ) .
& proJ ple (p g) in the centre of a silicon sensor with a linear electric field

utilises a commercial CMOS imaging process - detailed
process information is proprietary

. . Simulating Monolithic Active Pixel Sensors:
* Solution: development of a technology-lndependent A Technology-Independent Approach Using Generic Doping Profiles

simulation approach using generic doping profiles | _ _ _
pp g g p g p Hikan Wennlof™*, Dominik Darmheimb, Manuel Del Rio Viera™', Katharina Dortb"l, Doris Eckstein®, Finn Feindt®,
Ingrid-Maria Gregor®, Lennart Huth®, Stephan Lachnit™", Larissa Mendes™', Daniil Bﬂstorguev“‘l, Sara Ruiz Daza™",

B Currently ertlng a paper descrlblng the ap proaCh SerVing Paul Schiitze®, Adriana Simancas™", Walter S“m")’**bs Simon Spannagel®, Marcel Stanitzki®, Alessandra Tomal®,
i 1 ’ Anastasiia Velyka”, Gianpiero Vignolﬂ""‘l
as a toolbox for such simulations

* Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

bO‘HHN,. Geneva, Switzerland
“ University of Campinas, Cidade Universitaria Zeferino Vaz, 13083-970, Campinas, Brazil
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https://indico.desy.de/event/38759/contributions/144494/

Tools used in the simulation approach

Sentaurus Syn[]psy3®

TC Silicon to Software

Allpix Squared: a Monte Carlo
simulation framework for
semiconductor detectors

https://allpix-squared.docs.cern.ch/

Technology Computer-Aided Design

* Models semiconductor devices using finite element * Simulates full detector chain, from energy deposition
methods through charge carrier propagation to signal digitisation
* Calculates realistic and accurate electric fields and ~ Interfaces to Geant4 and TCAD
potentials from doping concentrations * Simulation performed quickly - allows for high-

statistics data samples across a full detector

; ;”’é’im
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Example electric field in TCAD Particle beam passing through a single sensor in Allpix?
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https://allpix-squared.docs.cern.ch/
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Technology computer-aided design

Enhanced Lateral Drift
sensor simulation, A. Velyka
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* Models semiconductor devices in 2D or 3D, and numerically

solves equations using provided information
60

0 10 20 30 40 50 60

— By providing doping information, e.g. electric fields and
X [um]

weighting potentials can be calculated

— Capacitances, I-V and C-V curves, and transient properties can be
extracted

* Fabrication steps in semiconductor manufacturing can be
simulated

* TCAD expertise has been growing at DESY over the last
few years

— Used e.g. in the ELAD project and the Tangerine project

* Different pixel geometries and layouts can be simulated in
great detail

* Some example resulting electric fields shown on the right

Rectangular pixel simulation, A. Simancas
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https://bib-pubdb1.desy.de/record/440957
https://arxiv.org/abs/2303.18153

Allpix Squared

A Monte Carlo simulation framework for semiconductor detectors

* Simulates charge carrier motion in semiconductors, using well-tested and
validated algorithms

New website and extensive documentation:

— Includes different models for e.g. charge carrier mobility, lifetime and https://allpix-squared.docs.cern.ch/
recombination, trapping and detrapping

[A11Pix]
— Support for several semiconductor materials and pixel and sensor geometries number_of_events = 10000
detectors_file = "telescope.conf”

* Provides a low entry barrier for new users (GeometryBuilderGeanta]

. . . . world_material = "air"

— Simulations are set up via human-readable configuration files

[DepositionGeant4]
* Steady development over many years particle_type = "Pi+"

number_of_particles = 1

— Main developers currently at DESY source_position = Qum Qum -200mm
source_type = "beam

— Framework is easily extendable and widely used beam_size = 1imm

beam_direction = @ @ 1

— Open-source, and written in modern C++
[ProjectionPropagation]

— Version 3.0.0 released on the 4th of May this year

[SimpleTransfer]
* Last week 4th User Workshop here at DESY, with over 60 participants [DefaultDigitizer]
— Presentations hold many example applications Minimal simulation configuration
SESY. example
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https://indico.cern.ch/e/apsqws4
https://allpix-squared.docs.cern.ch/

N-well collection
electrode

Silicon simulation layout and assumptions  [egme T & | J

shieFding electronics,

Using the Tangerine project as an example

* High-resistivity epitaxial layer grown on low-resistivity

substrate | |
Epitaxial layer, P
e Approximate doping concentrations can be found in Substrate Pt
published papers and theses, that have been approved “N-gap layout”, M. Miinker et al 2019 JINST 14 C0501
by the foundry

— The exact values are proprietary information, however

Metal bias contacts

* Doping wells are simulated without internal structure
and as flat profiles

— Small collection n-well in the centre of the pixel

— Deep p-well holding the in-pixel CMOS electronics

* 3D geometry simulated, including metal bias contacts
and Ohmic contact regions in the silicon
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https://indico.desy.de/event/38759/contributions/144494/

Finite element method simulations using TCAD

Using the Tangerine project as an example

* Using TCAD, doping profiles and electric fields are 107
simulated O
" o)
— Studies are made observing the impact of varying different A =3
parameters, such as well doping concentrations and mask j U:f;
geometries B i O
* Starting by creating the geometry and doping regions g %
— Doping geometry is further refined by simulating diffusion . -4 A (:)D
between regions at sensor production process . prl
temperatures ﬁ 3
=2 -
* Gives a continuous interface between epi and substrate - g
* Device simulations used to simulate electric fields, | >
. . . . 0
electrostatic potentials, and performing transient s a3 4 e 2w
simulations Y [um]

Process simulation result, showing dopant diffusion
between substrate and epitaxial layer
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https://indico.desy.de/event/38759/contributions/144494/

Finite element method simulations using TCAD

Example study: impact of n-gap size on electric field

* The gap in the n-gap layout is introduced to give a lateral electric field at pixel edges

* The magnitude of the field depends on the size of the gap
— A small gap makes the lateral components cancel, and a large gap leads to a low-field region

* Figures show simulation results for the lateral electric field (red and blue) for different gap sizes

Collection electrodes Gap

(a) 1 pm gap (b) 2.5 pm gap (c) 4 pm gap
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Finite element method simulations using TCAD

Tra

Centre incidence

DESY.

nsient simulations

Extracting the time-dependent induced signal on the
collection electrodes, from traversal of a MIP

Investigating both pixel corner incidence and pixel
centre incidence

— Gives indication of “worst case” and “best case” particle hit
scenarios

Corner incidence
I ]

]
I

Current [nA]

Square pixels, 20x20 um?, n-gap layout

N TCAD simulation
600[— — Pixel centre incidence
I | N (epayp Pixel corner incidence
500—
400}—
300|—
200—
100|—
B | hl-‘ -. i | L J_
% 15 2 25 3
Time [ns]

Transient pulses for pixel centre and corner incidence
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Monte Carlo simulations using Allpix?

* Flexible and modular framework, describing each part of semiconductor signal generation and propagation

* Allows import of TCAD fields and doping profiles

— Allpix? and TCAD make a powerful combination; fast and detailed simulations possible, allowing high statistics

Geometry Electric Energy Charge Signal Digitization Writing
Construction Field Deposition Transport Transfer Output
Config. Data

N {"""""] ™ ™ r-----\ r"""""]

( All detectors Detector 1 All detectors r Detector 1 Detector 1 Detector 1 All detectors
Construction of the Electric field from Charge deposition Project charges Transfer charges Digitisation Write simulation
Geant4 geometry TCAD simulation with Geant4 results to file

J J J

ee
e

incident R detector
radiation W\WQ ACIDC 011101001 \oqqout

i

Figure from S. Spannagel, BTTB10, and A. Simancas, 4th Allpix Squared User Workshop

DESY.
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https://indico.cern.ch/event/1058977/contributions/4632035/
https://indico.cern.ch/event/1252505/contributions/5388331/

Collection electrodes  Gap

Monte Carlo simulations using Allpix?

Impact of mobility model

} Epitaxial
7 layer
* Physical parameters and models can easily be exchanged

* Example: mobility models in silicon Substrate

— Jacoboni-Canali model is doping-independent =~

* Sufficient for describing charge propagation in low-doped regions

* In high-doped regions (e.g. substrate) diffusion is unphysically

large

_ . . : . . — - oues
Extended Canali model (including the Masetti model) is doping W Epitaxial

dependent ks PO E 00—

Nkl STTE layer

* Describes charge carrier motion well also in highly-doped regions ]

0.01—

* Linegraphs show the propagation paths of individual charge 0.005

carriers =
-0.005— Substrate

— Each blue line is the path of a single electron Y

—0.015—i

002

LA B R B T T T LA R B B B T
0.29 0.3 0.31 0.32 0.33
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Monte Carlo simulations using Allpix?

Example result from the Tangerine project

* High-statistics simulations allow extraction of
observables such as cluster size, resolution,
efficiency

* Sensor mean efficiency versus detection
threshold, for different bias voltage

— Simulation carried out with a DESY II-like beam of
electrons; many events, so statistical error bars are
small

* The trend is as expected:

— Efficiency decreases as threshold increases

— The sensor reaches its full efficiency potential already
at-1.2V

* 0V deviates from the others by being less efficient
as threshold increases, most likely due to
incomplete depletion

DESY.
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Preliminary comparison to data

Example result from the Tangerine project

* Testbeams have been carried out at DESY, and first
comparisons made to simulations

* Results from the “Analog Pixel Test Structure” (APTS)

— N-gap layout
—  25x25 um? pixel size
— 4x4 pixel matrix

— -4.8 V bias voltage

* The trend between simulations and data matches well
* Some slight differences are currently being investigated

* More preliminary results have been presented at
BTTB11

DESY.
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Conclusions and outlook

* At DESY, there is expertise in TCAD and semiconductor Monte Carlo simulations

— TCAD simulations performed on several sensor developments over the last few years
— The Allpix? framework is actively developed and used in-house
* A technology-independent approach using generic doping profiles has been

developed for silicon sensor simulations; a generic toolbox, free from proprietary
information

* Next steps in the simulations in the Tangerine project:

— Properly define the uncertainties of the simulation results, by varying parameters and
quantifying their impacts

* So far, error bars are purely statistical
— Compare to data from testbeams carried out on test chips

* This will allow for validation of the predictive power of the simulations

* Accurate simulations will guide the way to future sensor submissions!

DESY.
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General layout and assumptions

Reminder: we work with three different sensitive volume layouts

N-well collection Incoming particle N-well collection
electrode ) electrode
lDe_eF P-well, : J - l / J DeeF P-well, -
shielding electronics AN \shielding electronics ‘
_hle
N
7 €/h i
\ efh
...... '—*\_‘ i
e’k
Epitaxial layer, P L€

Standard layout, s. Senyukov et N-blanket layout, w. Snoeys et al.
al. doi:10.1016 doi:10.1016
DESY.

N-well collection
electrode

it O [

LhieFding electronic

 Epitaxial layer, P-

N-gap layout, M. Miinker et al 2019
JINST 14
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Monte Carlo simulations using Allpix?

Impact of mobility model

* Mobility model also impacts final observables

% 100__ + Doping-independent mobility
* High-statistics simulations allow extraction of é i F- Doping dependont mabilty
observables such as cluster size, resolution, efficiency Hoos
* Figure shows sensor efficiency vs detection sl
threshold, for two different mobility models i
— Simulation carried out with a DESY II-like beam of 40—
electrons i
— Each point corresponds to 500 000 events, so the statistical o0l
error bars are very small -
* The doping-independent mobility model over- ol v Lo b b b b L
. . 20 0 40 0 0
estimates efficiency, due to an excess of charge 0 100 0 300 0 °00 Thrgs?mld [e]
collected from the highly-doped substrate Sensor efficiency vs threshold for two different

mobility models
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Monte Carlo simulations using Allpix?

Impact of dopant diffusion simulation

DESY.

Linegraphs to demonstrate charge carrier movement

Without simulated dopant diffusion, a significant
electric field appears in the epitaxial layer-substrate
interface

— This is unphysical

With simulated dopant diffusion (see slide 6), there is
a smooth transition region rather than a step
function
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Transient simulations, comparing TCAD and Allpix?

DESY.

Generating weighting potentials for use in Allpix?, from the
electrostatic potentials from TCAD

— Using Allpix? for the transient simulations gives a lower
computational cost, and allows use of Geant4 energy
deposition

First step: compare Allpix? results to TCAD results

— Allpix? results are the average of 10 000 events, TCAD is a
single event

— Same settings are used for charge carrier creation and mobility

— Results in general agreement

Current [nA]

1.4
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2 2
(o7} oo
|III|III|III|III|III|I
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¥

—— TCAD simulation

—— Allpix® simulation

=
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15 20 25 30 35 40

Time [ns]

(a) Standard layout

Page 20



Transient simulations, comparing linear energy deposition to Geant4

* Using the n-blanket layout N-blanket layout, corner incidence
T .
* Each signal is the average of 10 000 events, incident in the = 6 —— Geant4 energy deposit
pixel corner = — Linear energy deposit
o
5
* Geant4 energy deposition includes stochastic effects, while
linear deposit generates 63 electron-hole pairs per um 4

IIII[TlllllllllTIIlIIII|ITII|II
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