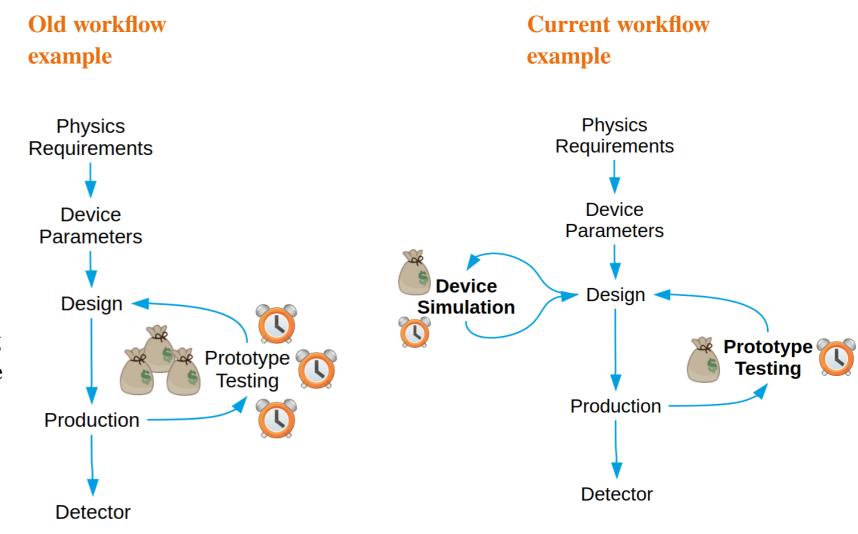
Detector simulations

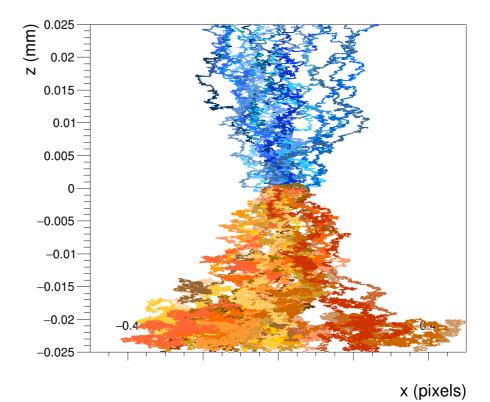

with a focus on silicon sensors

H. Wennlöf

1/6 -23

Motivation for simulations

- A way to understand and predict sensor behaviour
- Computing power is relatively cheap nowadays
 - Simulations are cheaper and faster than prototype production
- A combination of detailed simulations and prototype testing can be used to efficiently guide the way in sensor developments



Figures by A. Simancas, <u>BTTB10</u>

DESY.

Silicon sensor simulations

- Goal: accurate simulation of the charge collection behaviour in the sensitive volume
 - Enables prediction of sensor performance (e.g. resolution, efficiency)
 - Done by simulating the movement of electron-hole pairs created by an interacting particle
- **Issue:** The access to manufacturing process information may be **very limited**
 - The Tangerine project for example (presented <u>this morning</u>)
 utilises a commercial CMOS imaging process detailed
 process information is **proprietary**
- Solution: development of a technology-independent simulation approach using generic doping profiles
 - Currently writing a paper describing the approach, serving as a toolbox for such simulations

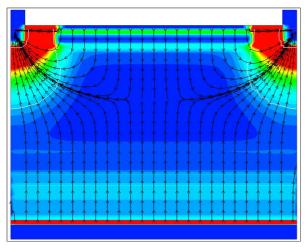
Simulated motion of individual electrons and holes deposited in the centre of a silicon sensor with a linear electric field

Simulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles

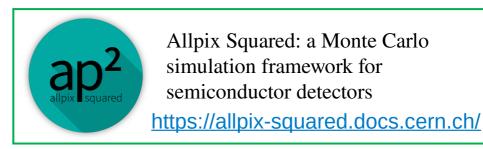
Håkan Wennlöf^{a,*}, Dominik Dannheim^b, Manuel Del Rio Viera^{a,1}, Katharina Dort^{b,1}, Doris Eckstein^a, Finn Feindt^a, Ingrid-Maria Gregor^a, Lennart Huth^a, Stephan Lachnit^{a,1}, Larissa Mendes^{a,1}, Daniil Rastorguev^{a,1}, Sara Ruiz Daza^{a,1}, Paul Schütze^a, Adriana Simancas^{a,1}, Walter Snoeys^b, Simon Spannagel^a, Marcel Stanitzki^a, Alessandra Tomal^c, Anastasiia Velyka^a, Gianpiero Vignola^{a,1}

^a Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany ^b CERN, Geneva, Switzerland ^c University of Campinas, Cidade Universitaria Zeferino Vaz, 13083-970, Campinas, Brazil

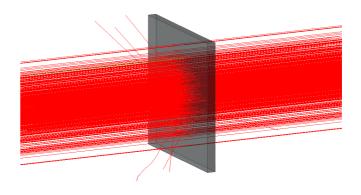
DESY.


Tools used in the simulation approach

Sentaurus TCAD

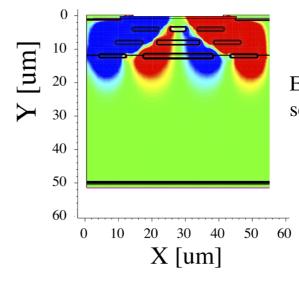


Technology Computer-Aided Design

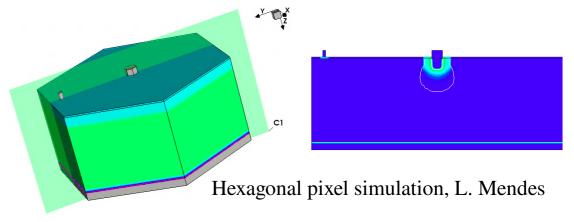

- Models semiconductor devices using finite element methods
- Calculates realistic and accurate electric fields and potentials from doping concentrations

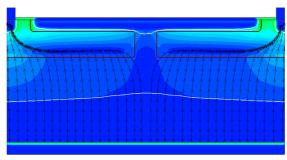
Example electric field in TCAD

- Simulates **full detector chain**, from energy deposition through charge carrier propagation to signal digitisation
 - Interfaces to Geant4 and TCAD
- Simulation performed **quickly** allows for **high- statistics** data samples across a full detector



Particle beam passing through a single sensor in Allpix²


TCAD


Technology computer-aided design

- Models **semiconductor devices** in 2D or 3D, and numerically solves equations using provided information
 - By providing doping information, e.g. electric fields and weighting potentials can be calculated
 - Capacitances, I-V and C-V curves, and transient properties can be extracted
- **Fabrication steps** in semiconductor manufacturing can be simulated
- TCAD expertise has been growing at DESY over the last few years
 - Used e.g. in the ELAD project and the Tangerine project
- Different pixel geometries and layouts can be simulated in **great detail**
- Some example resulting electric fields shown on the right

Enhanced Lateral Drift sensor simulation, A. Velyka

Rectangular pixel simulation, A. Simancas

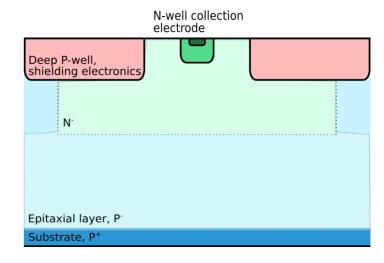
Allpix Squared

A Monte Carlo simulation framework for semiconductor detectors

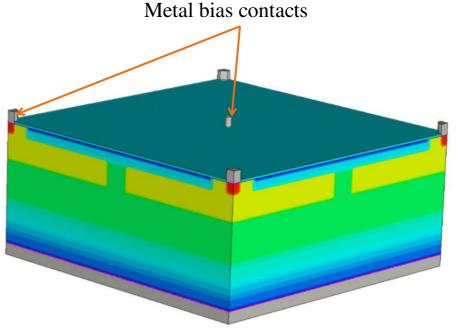
- Simulates **charge carrier motion** in semiconductors, using **well-tested** and **validated** algorithms
 - Includes different models for e.g. charge carrier mobility, lifetime and recombination, trapping and detrapping
 - Support for several semiconductor materials and pixel and sensor geometries
- Provides a **low entry barrier** for new users
 - Simulations are set up via human-readable configuration files
- Steady development over many years
 - Main developers currently at DESY
 - Framework is easily extendable and widely used
 - Open-source, and written in modern C++
 - Version 3.0.0 released on the 4th of May this year
- Last week 4th User Workshop here at DESY, with over 60 participants
 - Presentations hold many example applications

New website and extensive documentation: https://allpix-squared.docs.cern.ch/

```
[AllPix]
number_of_events = 10000
detectors_file = "telescope.conf"
[GeometryBuilderGeant4]
world_material = "air"
[DepositionGeant4]
particle_type = "Pi+"
number of particles = 1
source_position = 0um 0um -200mm
source_type = "beam"
beam size = 1mm
beam_direction = 0 0 1
[ProjectionPropagation]
[SimpleTransfer]
[DefaultDigitizer]
```

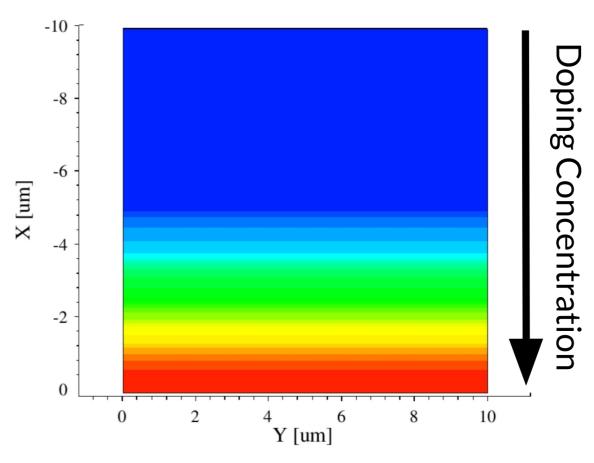

Minimal simulation configuration example

Page 6


Silicon simulation layout and assumptions

Using the **Tangerine project** as an example

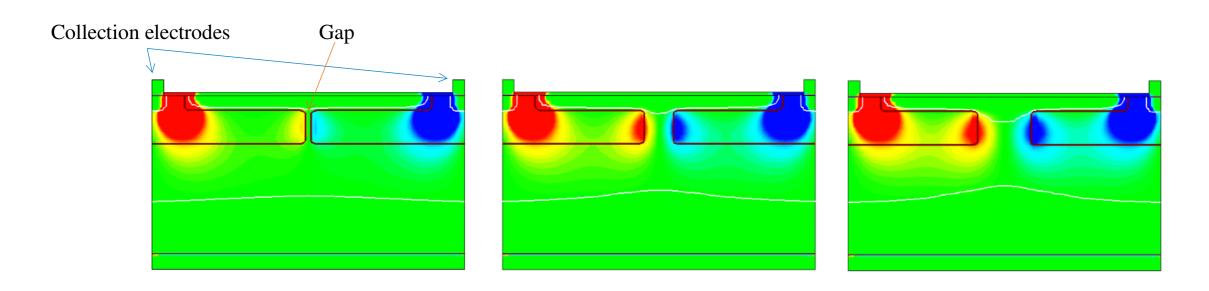
- High-resistivity epitaxial layer grown on low-resistivity substrate
- Approximate doping concentrations can be found in published papers and theses, that have been approved by the foundry
 - The exact values are proprietary information, however
- Doping wells are simulated without internal structure and as flat profiles
 - Small collection n-well in the centre of the pixel
 - Deep p-well holding the in-pixel CMOS electronics
- 3D geometry simulated, including metal bias contacts and Ohmic contact regions in the silicon


"N-gap layout", M. Münker et al 2019 JINST 14 C0501

Finite element method simulations using TCAD

Using the **Tangerine project** as an example

- Using TCAD, doping profiles and electric fields are simulated
 - Studies are made observing the impact of varying different parameters, such as well doping concentrations and mask geometries
- Starting by creating the **geometry and doping regions**
 - Doping geometry is further refined by simulating diffusion between regions at sensor production process temperatures
 - Gives a continuous interface between epi and substrate
- Device simulations used to simulate electric fields, electrostatic potentials, and performing transient simulations

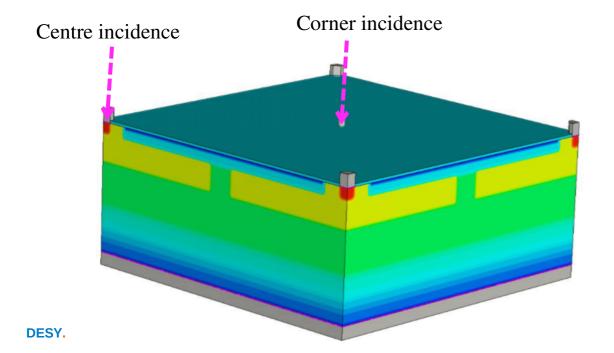

Process simulation result, showing dopant diffusion between substrate and epitaxial layer

Finite element method simulations using TCAD

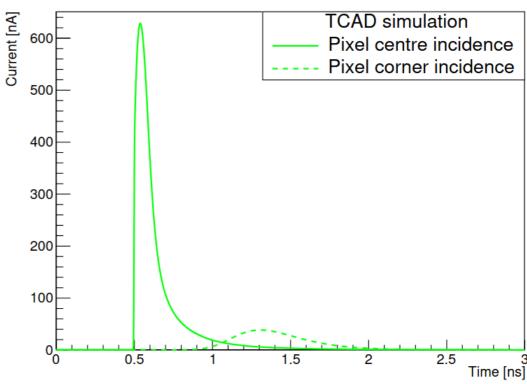
Example study: impact of n-gap size on electric field

DESY.

- The gap in the n-gap layout is introduced to give a **lateral electric field at pixel edges**
- The magnitude of the field depends on the **size of the gap**
 - A small gap makes the lateral components cancel, and a large gap leads to a low-field region
- Figures show simulation results for the **lateral electric field** (red and blue) for different gap sizes


(a) 1 μ m gap (b) 2.5 μ m gap (c) 4 μ m gap

Page 9


Finite element method simulations using TCAD

Transient simulations

- Extracting the **time-dependent induced signal** on the collection electrodes, from traversal of a MIP
- Investigating both pixel corner incidence and pixel centre incidence
 - Gives indication of "worst case" and "best case" particle hit scenarios

Square pixels, 20x20 μm^2 , n-gap layout

Transient pulses for pixel centre and corner incidence

Page 10

- Flexible and modular framework, describing each part of semiconductor signal generation and propagation
- Allows import of TCAD fields and doping profiles
 - Allpix² and TCAD make a **powerful combination**; fast and detailed simulations possible, allowing high statistics

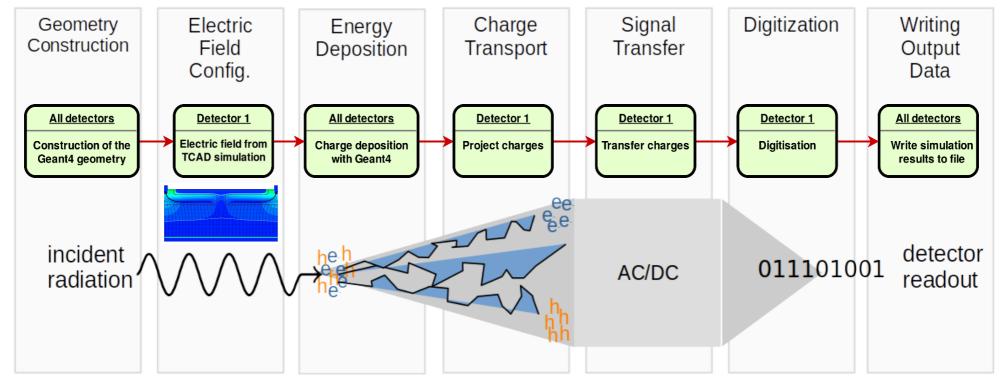
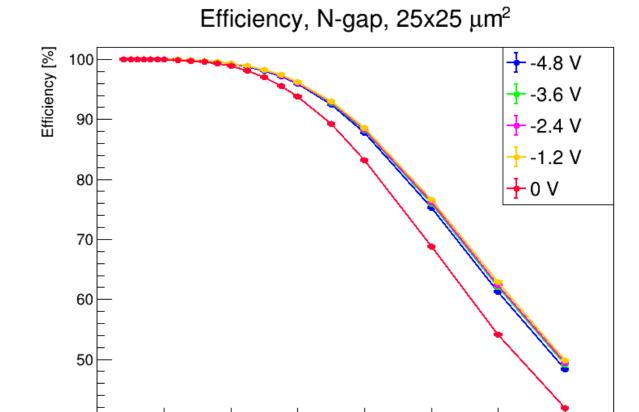



Figure from S. Spannagel, BTTB10, and A. Simancas, 4th Allpix Squared User Workshop


Impact of mobility model

- Physical parameters and models can easily be exchanged
- Example: **mobility models** in silicon
 - Jacoboni-Canali model is doping-independent
 - Sufficient for describing charge propagation in low-doped regions
 - In high-doped regions (e.g. substrate) diffusion is unphysically large
 - Extended Canali model (including the Masetti model) is dopingdependent
 - Describes charge carrier motion well also in highly-doped regions
- Linegraphs show the **propagation paths of individual charge** carriers
 - Each blue line is the path of a single electron

Example result from the Tangerine project

- High-statistics simulations allow extraction of observables such as cluster size, resolution, efficiency
- Sensor mean efficiency versus detection threshold, for different bias voltage
 - Simulation carried out with a DESY II-like beam of electrons; many events, so statistical error bars are small
- The trend is as expected:
 - Efficiency decreases as threshold increases
 - The sensor reaches its **full efficiency** potential already at -1.2 V
- 0 V deviates from the others by being less efficient as threshold increases, most likely due to incomplete depletion

100

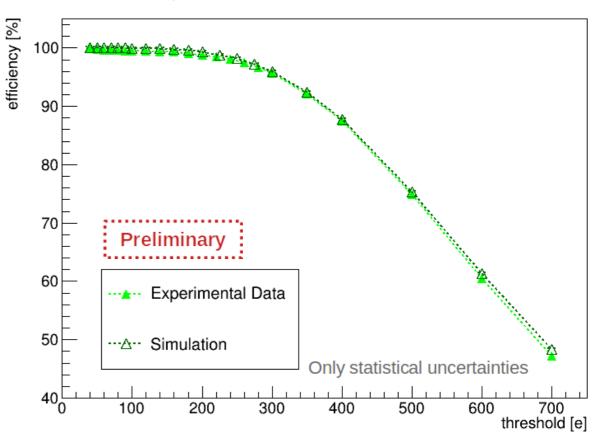
200

300

400

500

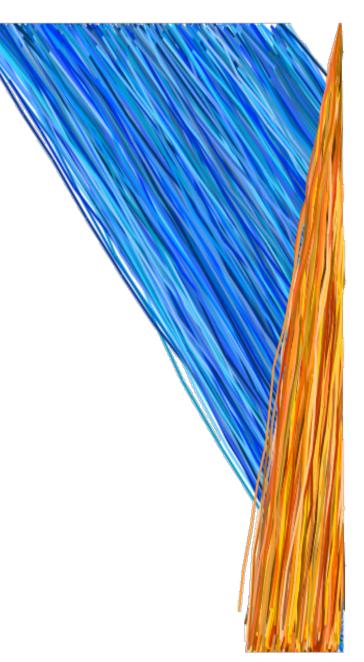
600


700 Threshold [e]

Preliminary comparison to data

Example result from the Tangerine project

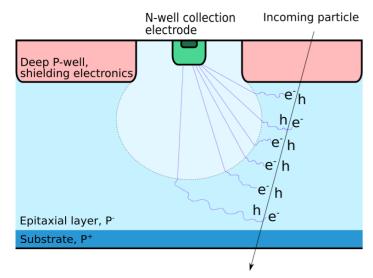
- Testbeams have been carried out at DESY, and first comparisons made to simulations
- Results from the "Analog Pixel Test Structure" (APTS)
 - N-gap layout
 - 25x25 μ m² pixel size
 - 4x4 pixel matrix
 - -4.8 V bias voltage
- The trend between simulations and data **matches well**
- Some slight differences are currently being investigated
- More preliminary results have been presented at BTTB11


Experimental Data vs. Simulations

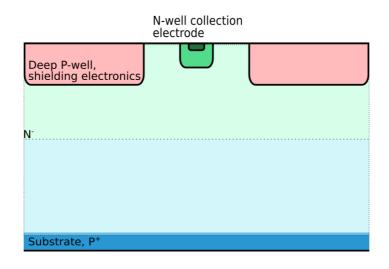
Conclusions and outlook

- At DESY, there is **expertise** in TCAD and semiconductor Monte Carlo simulations
 - TCAD simulations performed on **several sensor developments** over the last few years
 - The Allpix² framework is actively **developed and used in-house**
- A technology-independent approach using generic doping profiles has been developed for silicon sensor simulations; a **generic toolbox**, free from proprietary information

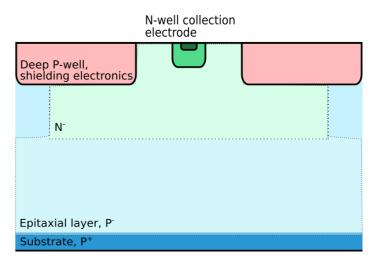
- Next steps in the simulations in the Tangerine project:
 - Properly define the uncertainties of the simulation results, by varying parameters and quantifying their impacts
 - So far, error bars are purely statistical
 - Compare to data from testbeams carried out on test chips
 - This will allow for **validation of the predictive power** of the simulations
- Accurate simulations will guide the way to future sensor submissions!



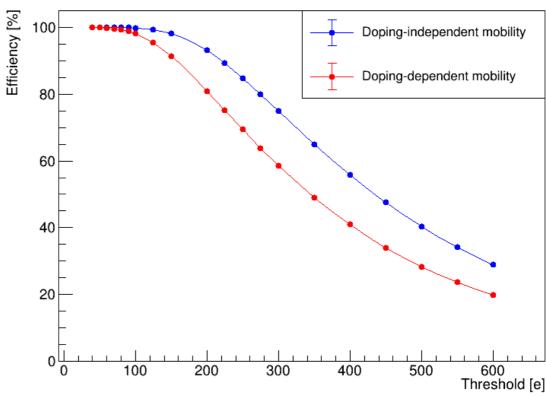
Backup slides



General layout and assumptions

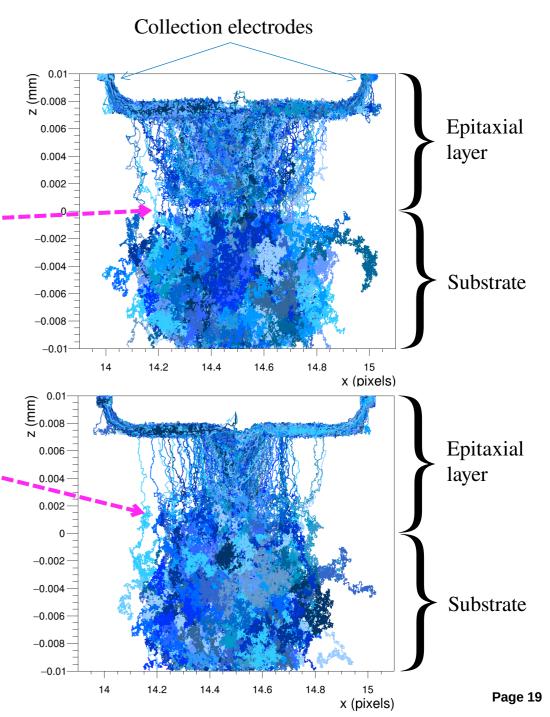

Reminder: we work with three different sensitive volume layouts

Standard layout, S. Senyukov et al. doi:10.1016

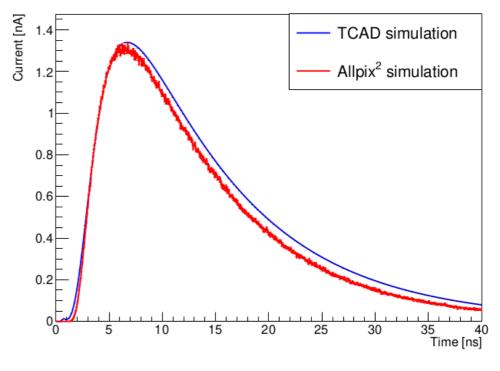

N-blanket layout, W. Snoeys et al. doi:10.1016

N-gap layout, M. Münker et al 2019
JINST 14

Impact of mobility model


- Mobility model also impacts final observables
- High-statistics simulations allow extraction of observables such as cluster size, resolution, efficiency
- Figure shows sensor efficiency vs detection threshold, for two different mobility models
 - Simulation carried out with a DESY II-like beam of electrons
 - Each point corresponds to 500 000 events, so the statistical error bars are very small
- The doping-independent mobility model **overestimates efficiency**, due to an excess of charge collected from the highly-doped substrate

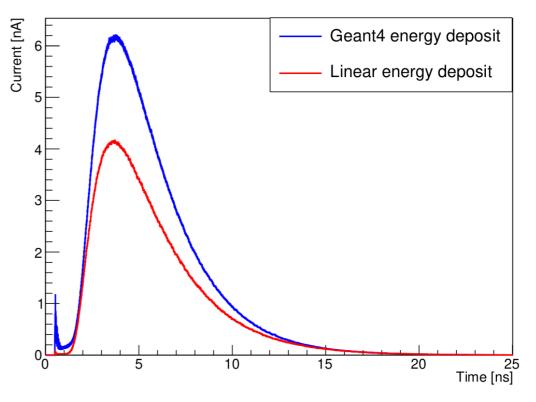
Sensor efficiency vs threshold for two different mobility models


Impact of dopant diffusion simulation

- Linegraphs to demonstrate charge carrier movement
- Without simulated dopant diffusion, a significant electric field appears in the epitaxial layer-substrate interface
 - This is **unphysical**
- With simulated dopant diffusion (see slide 6), there is a **smooth transition region** rather than a step function
 - More natural, and provides a better match to data

Transient simulations, comparing TCAD and Allpix²

- Generating weighting potentials for use in Allpix², from the electrostatic potentials from TCAD
 - Using Allpix² for the transient simulations gives a lower computational cost, and allows use of Geant4 energy deposition
- First step: compare Allpix² results to TCAD results
 - Allpix² results are the average of 10 000 events, TCAD is a single event
 - Same settings are used for charge carrier creation and mobility
 - Results in general agreement



(a) Standard layout

Transient simulations, comparing linear energy deposition to Geant4

- Using the n-blanket layout
- Each signal is the average of 10 000 events, incident in the pixel corner
- Geant4 energy deposition includes stochastic effects, while linear deposit generates 63 electron-hole pairs per µm

N-blanket layout, corner incidence

