

Katja Krüger (DESY)

Joint DESY/UHH perspectives in detector research 1 June 2023

Motivation

Higgs Factories

- European Strategy Update identified Higgs Factory as high priority
- Linear & Circular Proposals

Calorimeters for Higgs Factories

- goal: want to distinguish $Z \rightarrow jet jet$ from $W \rightarrow jet jet$
- requires $\sigma(E)/E \approx 3-4\%$
- can be reached by particle flow algorithms (PFA)
- for each particle within a jet: use the subdetector with optimal resolution
- need to avoid double counting and wrong merging
- need an imaging calorimeter!
- requirements for the calorimeter:
 - highly granular
 - reconstruction of neutral particles: good energy resolution
 - calorimeter has to be within magnet coil: very compact
- Scintillator tiles are a scalable, cost effective solution

The CALICE AHCAL

The Origin: AHCAL Physics Prototype

- The first large calorimeter based on scintillator tiles read out by SiPMs
 - WLS fibers in each tile
- Tested in many testbeams 2006-2012

Universität Hamburg

AHCAL Physics Prototype: Results

DESY. SiPM-on-Tile calorimeter development | Joint DESY/UHH perspectives in detector research | Katja Krüger | 1 June 2023

AHCAL Technological Prototype

- highly granular scintillator SiPM-on-tile hadron calorimeter, 3*3 cm² scintillator tiles optimised for uniformity
- fully integrated design
 - front-end electronics, readout
 - voltage supply, LED system for calibration
 - no cooling within active layers -> power pulsing
- **scalable** to full detector (~8 million channels)
- geometry inspired by ILD, similar to SiD and CLICdp
- HCAL Base Unit: 36*36 cm², 144 tiles, 4 SPIROC2E ASICs
 - slabs of 6 HBUs, up to 3 slabs per layer

AHCAL Technological Testbeam Prototype

- Large enough to contain hadron showers
 - 38 active layers of 72*72 cm²
 - 4 HBUs per module
 - in total: 608 SPIROC2E ASICs, ~22000 channels
 - SiPMs: Hamamatsu S13360-1325PE
- All modules interchangeable
- Built with scalable production techniques in ~2 years
- Operated in beam tests with muons, electrons and pions at CERN SPS in 2018
 - Collected O(100) mio events
 - Very stable running
 - Nearly noise free
 - < 1 per mille dead channels
- Combined beam test together with SiW ECAL in 2022
- Plan: adopt the design to the needs of a circular e+ecollider

AHCAL Technological Trototype at SPS Testbeam

Ru: 60487 Event: 93 Date: 13.05.2018 Trme: 21:30:28.00000000

AHCAL Technological Prototype: Analyses

High granularity offers detailed look into hadron showers

- Used in particle ID based on Boosted Decision Trees
- Studies of shower shapes
- Application of the PandoraPFA Particle Flow Algorithm
- Hit time measurement (resolution ~1ns)

Magenta: Charged Hadron Cyan: Neutral Hadron Grey: Unclustered Hits

The CMS HGCAL

CMS HGCAL

Overview

- current CMS calo endcap will not survive in HL-LHC conditions
- in 2015, decided to replace it with silicon-based High-Granularity calorimeter
- synergy with CALICE high granularity calorimeter concepts
 - Hexagonal modules based on Si sensors in CE-E and highradiation regions of CE-H
 - Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H

CMS HGCAL

Technology

- current CMS calo endcap will not survive in HL-LHC conditions
- in 2015, decided to replace it with silicon-based High-Granularity calorimeter
- synergy with CALICE high granularity calorimeter concepts
 - Hexagonal modules based on Si sensors in CE-E and highradiation regions of CE-H
 - Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H
- ~620m² Si sensors in ~26000 modules
- ~6M Si channels, 0.6 or 1.2cm² cell size
- ~370m² of scintillators in ~3700 boards
- ~240k scint. channels, 4-30cm² cell size

SiPM-on-Tile Technology for HGCAL

- New challenges:
 - radiation levels
 - data rates
 - operation at -30 degrees
 - Many different tile and board sizes
- Adaptation of AHCAL technologies to HGCAL
 - Readout with fast and rad-hard components
 - Careful design for large temperature variations
 - More flexible and robust assembly procedures
 - Tile wrapping
 - Tile glueing

DESY Contributions:

- Development of Tile-modules (board-level electronics) and production techniques (tile wrapping and placement)
- Assembly and quality control (QC) of Tile-modules, system and beam tests
- Contributions to the HGCAL low-level offline software
- Ongoing efforts in High-level reconstruction and ML

- SiPM-on-Tile calorimetry offers high granularity and good energy resolution at reasonable cost
- SiPM-on-Tile technology can be adapted to different conditions
 - Electron-positron collisions: CALICE AHCAL
 - HL-LHC: CMS HGCAL
- Active field of detector R&D at DESY and Uni Hamburg

Thank you!

Backup

AHCAL Prototype: Hit Time Measurement

New feature in AHCAL technological prototype: time measurement for individual hits

- Design resolution: ~1 ns
- SPIROC2E readout ASIC supports 2 bunch clock speeds
 - Testbeam mode: 250 kHz clock
 - More efficient for data taking in testbeams
 - Worse hit time resolution: ~2ns
 - ILC mode: 5 MHz
 - Adapted to ILC bunch structure
 - Better hit time resolution: ~0.8 ns
- Full exploitation in data analysis just started
- Most testbeam data so far taken in testbeam mode

