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Abstract

A review of the main elements of (fractional) analytical QCD is

presented. The main part of the review is focused on the intro-

duction of the Shirkov-Solovtsov and Bakulev-Mikhailov-Stefanis

approaches and their recent extension beyond the leading order

of perturbation theory. We present various representations in Eu-

clidean and Minkowski spaces, details of their construction and

show their applicability.



0. History. QED.

Consider so-called polarization operator D(k2) in QED. Leading

logarithmic terms of D(k2) in the n order of perturbation theory

with |k2| >> m2 (m is the electron mass) have the following form:

(e2F (K2,m2))n/K2, K2 = −k2 ≥ 0, F (K2,m2) =
1

3π
ln















K2

4m2















.

Resummation of the large logarithms leads to

(Landau,Abrikosov,Khalatnikov:1954):

Dper(k
2) =

1

K2

1

1− e2
3π ln







K2

4m2







.

Then, there is the pole (so-called Landau pole) at K2
p:

K2
p = 4m2e3π/e

2

and QED is not applicable atK2 ≥ K2
p (Landau,Pomeranchuk:1955).



With another side, there is so-called Kallen-Lehmann representa-

tion:

D(k2) =
1

K2 +
∫ ∞
4m2 dz

I(z)

z +K2, I(z) = ImD(iε−K2)

and Dper(k
2) is not in agreement with the Kallen-Lehmann repre-

sentation.

Combination of the Kallen-Lehmann representation and pertur-

bation theory (or same, perturbation theory for I(z)) has been

considered in (Redmond:1958), (Redmond,Uretsky:1958),

(Bogolyubov,Logunov,Shirkov:1959).



We follow (Bogolyubov,Logunov,Shirkov:1959).

From calculation (Landau,Abrikosov,Khalatnikov:1954) they ob-

tained that Iper(z) = 0 for z < 4m2 and for z ≥ 4m2:

Iper(z) =
e2

3πz

1












1− e2
3π ln







z−4m2

4m2













2
+ e2

9









.

Using Iper(z) in the Kallen-Lehmann representation they obtained

at |k2| >> m2

D(k2) =
1

K2

1

1− e2
3π ln







K2

4m2







+
(3π)/e2

K2 −K2
p
.

The additional term cancels exacly Landau pole at K2 = K2
p.

Moreover, it cannot be obtained in the framework of perturbation

theory, since it cannot be expanded in e2-series.



Thus, the combination of perturation theory and Kallen-Lehmann

representation (i.e. perturbation theory for spectral function) does

not lead to the Landau problem in QED.

In the general case the QCD couplant is defined as a product of

propagators and a vertex function. Therefore, one might pose a

question concerning the analytic properties of this quantity. This

matter has been examined (Ginzburg,Shirkov:1965).

It was shown that in this case the integral representation of the

Kallen-Lehmann type holds for the running coupling, too. Pro-

ceeding from these motivations, the analytic approach was lately

extended to Quantum Chromodynamics by D.V. Shirkov and I.L.

Solovtsov.



1. Introduction

According to the general principles of (local) quantum field the-

ory (QFT) (Bogolyubov,Shirkov:1959); (Oehme:1994)

observables in the spacelike domain can have singularities only with

negative values of their argument Q2.

On the other hand, for large values ofQ2, these observables are usu-

ally represented as power series expansion by the running coupling

constant (couplant) αs(Q
2), which, in turn, has a ghost singularity,

the so-called Landau pole, for Q2 = Λ2.

To restore analyticity, this pole must be removed.



Strong couplant αs(Q
2) obeys the renormalized group equation

L ≡ ln
Q2

Λ2
=

∫ as(Q
2) da

β(a)
, as(Q

2) =
αs(Q

2)

4π
, as(Q

2) = β0 as(Q
2)

with some boundary condition and the QCD β-function:

β(as) = −
∑

i=0
βia

i+2
s = −β0a

2
s (1 +

∑

i=1
bia

i
s), bi =

βi
βi+10

,

where the first fifth coefficients, i.e. βi with i ≤ 4, are exactly

known (Baikov,Chetyrkin,Kuhn: 2017).

So, already at leading order (LO), when as(Q
2) = a

(1)
s (Q2), we

have

a(1)s (Q2) =
1

L
,

i.e. a
(1)
s (Q2) does contain a pole at Q2 = Λ2.



In a series of papers (Shirkov,Solovtsov: 1996,1997);

(Milton,Solovtsov,Solovtsova: 1997); (Shirkov: 2001)

authors have developed an effective approach to eliminate the Lan-

dau singularity without introducing extraneous IR regulators.

The idea: the dispersion relation, which connects the new analytic

couplants: AMA(Q
2) in Euclidean space and UMA(s) in Minkowski

space, with the spectral function rpt(s), obtained in the framework

of perturbative theory. In LO

A
(1)
MA(Q

2) =
1

π

∫ +∞
0

ds

(s + t)
r
(1)
pt (s) , r

(1)
pt (s) = Im a(1)s (−s− iǫ) ,

U
(1)
MA(s) =

1

π

∫ +∞
s

dσ

σ
r
(1)
pt (σ)



So, let’s repeat once again: the spectral function is taken directly

from perturbation theory, but the analytical couplants AMA(Q
2)

and UMA(s) are restored using dispersion relations.

This approach is called Minimal Approach (MA) (Cvetic, Valen-

zuela: 2008) or Analytic Perturbation Theory (APT) (Shirkov,

Solovtsov:1996,1997); (Milton,Solovtsov,Solovtsova:1997);

(Shirkov:2001)

Thus, MA QCD is a very convenient approach that combines the

general (analytical) properties of quantum field quantities and the

results obtained within the framework of perturbative QCD, leading

to the appearance of the MA couplants AMA(Q
2) and UMA(s),

which are close to the usual strong couplant as(Q
2) in the limit of

large values of its argument and completely different at Q2 ≤ Λ2.



A further development of APT is the so-called fractional APT

(FAPT), which extends the principles of constructing to non-integer

powers of couplant, which arise for many quantities having non-zero

anomalous dimensions (Bakulev,Mikhailov,Stefanis: 2005,2008,2010),

with some privious study (Karanikas,Stefanis: 2001)

and reviews (Bakulev: 2008), (Stefanis: 2013).

The results in FATP have a very simple form in LO perturbation

theory, but they are quite complicated in higher orders.



In (Kotikov,Zemlyakov: 2022), in Euclidean space FART was ex-

tended to higher orders of perturbation theory using the so-called

1/L-expansion of the usual couplant.

For an ordinary coupling constant, this expansion is applicable only

for large values of its argument Q2, i.e. for Q2 >> Λ2.

In the case of an analytic coupling constant, the situation changes

greatly and this expansion is applicable for all values of the argu-

ment. This is due to the fact that the non-leading expansion correc-

tions disappear not only at Q2 → ∞, but also at Q2 → 0, which

leads to non-zero (small) corrections only in the region Q2 ∼ Λ2.



1.1. Other models of analytic couplant

MA coupling (Shirkov,Solovtsov: 1996,1997);

(Milton,Solovtsov,Solovtsova: 1997); (Shirkov: 2001):

A
(1)
SS(Q

2) =
1

L
+

1

1− t
, t =

Q2

Λ2
, L = ln(t) ,

with the infrared finite value:

A
(1)
SS(0) = 1 .



There are several other models of analytic couplant. We will show

a few of them.

1. Let us start with the model developed by (Alekseev,Arbuzov:1998),

(Alekseev:1998). By making use of a special solution to the Schwinger-

Dyson equations for the gluon propagator, these authors proposed

the following expression for the QCD running coupling

A
(1)
AA(Q

2) =
1

L
+

1

1− t
+
c

t
+

1− c

t +m2
g/Λ

2,

where mg is the gluon mass and c denotes a dimensionless param-

eter fixed by the phenomenological value of the gluon condensate.

The running coupling has enhancement in the infrared domain.



2. Another similar model for the QCD analytic coupland:

A
(1)
Latt(Q

2) =
1

L
+

1

1− t
+
ν

t
,

cames from an analysis of the lattice simulation data on the lowen-

ergy behavior of the QCD coupland (Boucaud et al.:2000), (Burgio

et al.:2002). The model also possesses the infrared enhancement.

3. By making use of a certain phenomenological reasoning, Web-

ber suggested the coupland of the following form (Webber:1998)

A
(1)
W (Q2) =

1

L
+

1

1− t

t + b

1 + b











1 + c

t + c











p
,

with a specific choice of the parameters: b = 1/4, c = 4, p = 4.

This model has infrared finite value:

A
(1)
W (0) =

1

2
.



4. Nesterenko model (Nesterenko:2000,2001) at LO:

d ln[A
(1)
N (Q2)]

d lnQ2 = −A
(1)
MA(Q

2) = −
1

π

∫ +∞
0

ds

(s + t)
r
(1)
pt (s) ,

that leads to

A
(1)
N (Q2) =

t− 1

tL
The model also possesses the infrared enhancement.

5. A generalization of the Nesterenko model (Srivastava et

al.:2001) (0 < p ≤ 1):

A
(1)
SPPW (Q2) =

















1

A
(1)
SPPW (Λ2)

+
∫ ∞
0 dσ

(t− 1)tp

(σ + t)((σ + 1)(1 + tp)

















−1

,

which equal to A
(1)
N (Q2), when p = 1. The model also possesses

the infrared enhancement.



5. 2δ and 2δ models of analytic QCD (Ayala,Contreras,Cvetic:2012),

(Ayala,Cvetic:2015), (Ayala,Cvetic,Kogerler:2017):

r
(1)
pt (σ) → r(1)n (σ) = π

n
∑

j=1
Fj δ(σ −M2

j ) + θ(σ −M2
0 ) r

(1)
pt (σ) ,

where M2
1 < M2

2 < ... < M2
n < M2

0 and Fj are some constants.

Here (n = 2) and (n = 3) for 2δ and 2δ models.

Several phenomenological models for the QCD coupland have

been proposed in (Krasnikov,Pivovarov:2001). It should be men-

tioned that the ideas, similar to that of the MA perturbation theory,

were also used in analysis of the electronpositron annihilation into

hadrons (Geshkenbein,Ioffe:1999), (Howe,Maxwell:2002,2004), in-

vestigation of the inclusive τ lepton decay (Geshkenbein,Ioffe,

Zablyuk:2001), (Geshkenbein:2003), the study of Bjorken sum rule

(Ayala et al.: 2017,2018,2020), ... .



The study of the power corrections to the strong coupland was

performed in (Grunberg:1995,2001), (Fischer:1997), (Caprini,Fischer:2002).

There is also a number of methods of the Renormalization group

improvement of perturbative series for the QCD observables (see,

e.g., (Grunberg:1992), (Pineda,Soto:2000), (Maxwell,Mirjalili:2000),

(Kiselev:2002), (Ahmady:2003), (Elias:2003),...).



This talk is organized as follows.

In Section 2 we firstly review the basic properties of the usual strong

couplant and its 1/L-expansion.

Section 3 contains fractional derivatives (i.e. ν-derivatives) of the

usual strong couplant, which 1/L-expansions can be represented

as some operators acting on the ν-derivatives of the LO strong

couplant. This is the key idea of this paper, which makes it possible

to construct 1/L-expansions of ν-derivatives of MA couplants for

high-order perturbation theory, which are presented in Section 4

and 5.

Sections 6 contains the application of this approach to the Bjorken

sum rule.

In conclusion, some final discussions are given.



2. Strong coupling constant

As shown in Introduction, the strong couplant as(Q
2) obeys the

renormalized group equation. When Q2 >> Λ2, it can be solved

by iterations in the form of 1/L-expansion (for simplicity we present

here the first 3 terms of the expansion). [In (Kotikov,Zemlyakov:

2022) the 5 terms of the expansion have been considered in an

agreement with the number of known coefficients βi]:

a
(1)
s,0(Q

2) =
1

L0
, a

(i+1)
s,i (Q2) = a

(1)
s,i(Q

2) +
i
∑

m=2
δ
(m)
s,i (Q2), Li = ln

Q2

Λ2k
,

where the corrections δ
(m)
s,k (Q2) can be represented as follows

δ
(2)
s,k(Q

2) = −
b1 lnLk

L2
k

, δ
(3)
s,k(Q

2) =
1

L3
k
[b21(ln

2Lk − lnLk − 1) + b2] .



We show exactly that at any order of perturbation theory, the cou-

plant as(Q
2) contains its own parameter Λ of dimensional trans-

mutation, which is fitted from experimental data.

It relates with the normalization αs(M
2
Z) as

Λi = MZ exp{−
1

2
[

1

as(M2
Z)

+ b1 ln as(M
2
Z)

+
∫ as(M

2
Z)

0 da











1

β(a)
+

1

a2(β0 + β1a)











]} ,

where αs(MZ) = 0.1176 in PDG20.

The coefficients βi depend on the number f of active quarks,

which changes at thresholds Q2
f ∼ m2

f . Here we will not consider

the f -dependence of Λ
f
i and as(f,M

2
Z). Since we will mainly

consider the region of low Q2, we will use the results for Λ
f=3
i .



2.2 Discussions

as,0
(1)

as,2
(3)

as,4
(5)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Q
2[GeV2]

Figure 1: The results for a
(i+1)
s,i (Q2) and (Λf=3

i )2 (vertical lines) with i = 0, 2, 4.

In Fig. 1 one can see that the strong couplants a
(i+1)
s,i (Q2) be-

come to be singular at Q2 = Λ2i . The Λ0 and Λi (i ≥ 1) values

are rather different (Chen,Liu,Wang,Waqas,Peng: 2021):

Λ
f=3
0 = 142 MeV, Λ

f=3
1 = 367 MeV, Λ

f=3
2 = 324 MeV,

Λ
f=3
3 = 328 MeV .



3. Fractional derivatives

Following (Cvetic,Valenzuela: 2006) we introduce the derivatives

(in the (i + 1)-order of perturbation theory)

ã
(i+1)
n+1 (Q2) =

(−1)n

n!

dna
(i+1)
s (Q2)

(dL)n
,

which will be very convenient in the case of the analytic QCD.

The series of derivatives ãn(Q
2) can successfully replace the cor-

responding series of the as-powers. Indeed, every derivative de-

crease the power of as but it comes together with the additional

β-function ∼ a2s, appeared during the derivative. So, every appli-

cation of derivative produces the additional as, and, thus, indeed

the series of derivatives can be used instead of the series of the

as-powers.



At LO, the series of derivatives ãn(Q
2) exactly coincide with ans .

Beyond LO, the relation between ãn(Q
2) and ans was established

in (Cvetic,Valenzuela: 2006), (Cvetic,Kogerler,Valenzuela: 20110)

and extended to the fractional case, where n → a non-integer ν,

in (Cvetic,Kotikov: 2012).

Now we consider the 1/L expansion of ã
(k)
ν (Q2). After some

calculatins, we have

ã
(1)
ν,0(Q

2) = (a
(1)
s,0(Q

2))
ν
=

1

Lν
0
,

ã
(i+1)
ν,i (Q2) = ã

(1)
ν,i(Q

2) +
i
∑

m=1
Cν+m
m δ̃

(m+1)
ν,i (Q2),

δ̃
(m+1)
ν,i (Q2) = R̂m

1

Lν+m
i

, Cν+m
m =

Γ(ν +m)

m!Γ(ν)
,

where

R̂1 = b1[Ẑ1(ν) +
d

dν
], R̂2 = b2 + b21[

d2

(dν)2
+ 2Ẑ1(ν + 1)

d

dν
+ Ẑ2(ν + 1)].



The representation of the δ̃
(m+1)
ν,i (Q2) corrections as R̂m-operators

is very important to use. This will make it possible to present high-

order results for the analytic couplant in a similar way.

Here

Z2(ν) = S2
1(ν)− S2(ν),

Z1(ν) ≡ S1(ν) = Ψ(1 + ν) + γE, S2(ν) = ζ2 − Ψ′(1 + ν),

and

Sm(N ) =
N
∑

k=1

1

km
, Ẑ1(ν) = Z1(ν)− 1, Ẑ2(ν) = Z2(ν)− 2Z1(ν) + 1.

Note that operators like (d/dν)m were used earlier in (Bakulev,Mikhailov,Stefanis:

2005,2008,2010).



4. MA coupling (Euclidean space)

There are several ways to obtain analytical versions of the strong

couplant as (see, e.g. (Bakulev: 2008)).

Here we will follow MA approach (Shirkov, Solovtsov: 1996), (Mil-

ton,Solovtsov,Solovtsova: 1997), (Shirkov: 2001)

as discussed in Introduction.

To the fractional case, the MA approach was generalized by Bakulev,

Mikhailov and Stefanis (hereinafter referred to as the BMS ap-

proach) (Bakulev,Mikhailov,Stefanis: 2005,2008,2010).

We first show the LO BMS results, and later we will go beyond

LO, following our results for the usual strong couplant obtained in

the previous section.



4.1 LO

The LO minimal analytic coupling A
(1)
MA,ν have the form

(Bakulev,Mikhailov,Stefanis: 2005)

A
(1)
MA,ν,0(Q

2) =




a
(1)
ν,0(Q

2)






ν
−

Li1−ν(z0)

Γ(ν)
≡

1

Lν
0
−∆

(1)
ν,0 ,

where

Liν(z) =
∞
∑

m=1

zm

mν =
z

Γ(ν)

∫ ∞
0

dt tν−1

(et − z)
, zi =

Λ2i
Q2

is the Polylogarithmic function.

For ν = 1 we recover the famous Shirkov-Solovtsov result (Shirkov,

Solovtsov: 1996)

A
(1)
MA,0(Q

2) ≡ A
(1)
MA,ν=1,0(Q

2) = a
(1)
s,0(Q

2)−
z0

1− z0
=

1

L0
−

z0
1− z0

.



4.2 Beyond LO

Following to the LO analytic couplant, we consider the difference

between the derivatives of usual and MA couplants:

ÃMA,n+1(Q
2) =

(−1)n

n!

dnAMA(Q
2)

(dL)n
.

For the differences of fracted derivatives of usual and MA cou-

plants

∆̃
(i+1)
ν,i ≡ ã

(i+1)
ν,i − Ã

(i+1)
MA,ν,i

we have the following results

∆̃
(i+1)
ν,i = ∆̃

(1)
ν,i +

i
∑

m=1
Cν+m
m R̂m











Li−ν−m+1(zi)

Γ(ν +m)











,

where the operators R̂i (i = 1, 2, 3, 4) are shown above.

After some evaluations, we obtain

∆̃
(i+1)
ν,i = ∆̃

(1)
ν,i +

i
∑

m=1
Cν+m
m Rm(zi)











Li−ν−m+1(zi)

Γ(ν +m)











,



where

R1(z) = b1[γE − 1 + M−ν,1(z)],

R2(z) = b2 + b21[M−ν−1,2(z) + 2(γE − 1)M−ν−1,1(z) + (γE − 1)2 − ζ2],

and

Liν,k(z) = (−1)k
dk

(dν)k
Liν(z) =

∞
∑

m=1

zm lnkm

mν , Mν,k(z) =
Liν,k(z)

Liν(z)
.



So, we have for MA analytic couplants Ã
(i+1)
MA,ν the following ex-

pressions:

Ã
(i+1)
MA,ν,i(Q

2) = Ã
(1)
MA,ν,i(Q

2) +
i
∑

m=1
Cν+m
m δ̃

(m+1)
MA,ν,i(Q

2)

where

Ã
(1)
MA,ν,i(Q

2) = ã
(1)
ν,i(Q

2)−
Li1−ν(zi)

Γ(ν)
,

δ̃
(m+1)
MA,ν,i(Q

2) = δ̃
(m+1)
ν,i (Q2)− Rm(zi)

Li−ν+1−m(zi)

Γ(ν +m)

and δ̃
(k+1)
ν,m (Q2) are given above.

There are three more representations for Ã
(1)
MA,ν,i(Q

2) (see (Kotikov,

Zemlyakov: 2005)) that give exactly the same numerical results.

Each of the representations is useful in its own kinematic range.



4.3. The case ν = 1

For the case ν = 1,

A
(i+1)
MA,i(Q

2) ≡ Ã
(i+1)
MA,ν=1,i(Q

2) = A
(1)
MA,i(Q

2) +
i
∑

m=1
δ̃
(m+1)
MA,1,i(Q

2)

where

A
(1)
MA,i(Q

2) = ã
(1)
ν=1,i(Q

2)− Li0(zi) = a
(1)
s,i(Q

2)− Li0(zi),

δ̃
(m+1)
MA,1,i(Q

2) = δ̃
(m+1)
1,i (Q2)− Rm(zi)

Li−m(zi)

m!
and

Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, Li−2(z) =

z(1 + z)

(1− z)3
.

The results can be used for phenomenological studies beyond LO

in the framework of the minimal analytic QCD.



4.4 Discussions

AMA,ν=1,0
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Figure 2: The results for A
(i+1)
MA,ν=1,i(Q

2) with i = 0, 2, 4.

From Fig. 2 we can see differences between A
(i+1)
MA,ν=1,i(Q

2) with

i = 0, 2, 4, which are rather small and have nonzero values around

the position Q2 = Λ2i .



Thus, we can conclude that contrary to the case of the usual

couplant, considered in Fig. 1, the 1/L-expansion of the MA cou-

plant is very good approximation at any Q2 values. Moreover,

the differences between A
(i+1)
MA,ν=1,i(Q

2) and A
(1)
MA,ν=1,0(Q

2) are

small. So, the expansions of A
(i+1)
MA,ν=1,i(Q

2) i ≥ 1 through the one

A
(1)
MA,ν=1,0(Q

2) done in (Bakulev,Mikhailov,Stefanis: 2005,2008,2010)

very good approximations.

Note that above representation of δ
(i+1)
MA,ν=1,i(Q

2) looks very simi-

lar to its expansion in terms ofA
(i+1)
MA,ν=1,i(Q

2) done in (Bakulev,Mikhailov,

Stefanis: 2005,2008,2010).



Also the approximation

A
(i+1)
MA,ν=1,i(Q

2) = A
(1)
MA,ν=1,0(kiQ

2), (i = 1, 2) ,

introduced in (Pasechnik,Shirkov,Teryaev,Solovtsova,Khandramai:

2010,2012) and used in (Kotikov,Krivokhizhin,Shaikhatdenov: 2012),

(Sidorov,Solovtsova: 2014) is very convenient, too.

Indeed, since the corrections δ
(i+1)
MA,ν=1,i(Q

2) are very small, then

one can see that the MA couplants A
(i+1)
MA,ν=1,i(Q

2) are very similar

to the LO ones taken with the corresponding Λi.



5. MA couplant in timelike region

Transition to the Minkowskian space is defined through the con-

tour integration (Shirkov:2005) [with earlier studies in (Schrempp,

Schrempp:1980), (Pennington,Ross:1981), (Krasnikov,Pivovarov:1982),

(Radyushkin:1982) ]

Ũ (l)
ν (s) =

1

2πi

−s+iǫ
∫

−s−iǫ

Ã
(l)
MA,ν(σ)

σ
dσ

The one-loop result has the form

(Bakulev,Mikhailov,Stefanis: 2005)

U (1)
ν (s) = Ũ (1)

ν (s) =
sin[(ν − 1) g(s)]

π(ν − 1)(π2 + L2
s)
(ν−1)/2

ν→1→
g(s)

π
,

where

Ls = ln
s

Λ2
, g(s) = arccos













Ls
√

π2 + L2
s













=
π

2
− arctan











Ls

π











.



It is convenient to introduce the results for

D(i)
ν (s) =











d

dν











i

U (1)
ν (s),

which can be represented in the form

D(i)
ν (s) =

h
(i)
si (s) sin [(ν − 1)g(s)] + h

(i)
co (s) cos [(ν − 1)g(s)]

π(ν − 1)(π2 + L2
s)
(ν−1)/2

.

After some calculations, we have

h
(1)
si (s) = −











1

ν − 1
+G(s)











, h(1)co (s) = g(s) ,

h
(2)
si (s) =

2

(ν − 1)2
+

2G

ν − 1
+G2 − g2, h(2)co (s) = −2g











1

ν − 1
+G











,

where

G(s) =
1

2
ln



π2 + L2
s



 .



So, it’s possible to write the expressions for Ũν(s) beyond the LO

as

Ũ (i+1)
ν (s) = Ũ (1)

ν (s) +
i
∑

m=1
Cν+m
m δ̃(m+1)

ν (s),

δ̃(m+1)
ν (s) = R̂m Ũ

(1)
ν+m(s), Cν+m

m =
Γ(ν +m)

m!Γ(ν)
,

In explicit form:

δ̃(2)ν (s) =
b1

νπ(π2 + L2
s)
ν/2

{g cos(νg) + [Ẑ1(ν − 1)−G] sin(νg)},

δ̃(3)ν (s) =
1

(ν + 1)π(π2 + L2
s)
(ν+1)/2

(b2 sin((ν + 1)g)

+b21{[Ẑ2(ν)− 2GẐ1(ν) +G2 − g2] sin((ν + 1)g)

+2g[Ẑ1(ν)−G] cos((ν + 1)g)})

There is another representation for Ũ
(i+1)
ν (s) that gives exactly

the same numerical results. Each of the representations is useful in

its own kinematic range.



5.1. ν=1

For the case ν = 1 we get

Ũ
(i+1)
ν=1 (s) = Ũ

(1)
ν=1(s) +

i
∑

m=1
δ̃
(m+1)
ν=1 (s),

where

U
(1)
1 (s) =

g(s)

π
=

1

π
arccos













Ls
√

L2
s + π2













=
1

π











π

2
− arctan











Ls

π





















and

δ̃
(2)
ν=1(s) =

b1
π(π2 + L2

s)
1/2

{g cos(g)− [1 +G] sin(g)},

δ̃
(3)
ν=1(s) =

1

2π(π2 + L2
s)
(b2 sin(2g) + b21[G

2 − g2 − 1] sin(2g)) .



We would like to note that

cos(g) =
Ls

√

L2
s + π2

, sin(g) =
π

√

L2
s + π2

and

sin(2g) = 2 sin(g) cos(g) =
2πLs

L2
s + π2

,

cos(2g) = cos2(g)− sin2(g) =
L2
s − π2

L2
s + π2

.
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Figure 3: 1,3 and 5 orders of U
(i)
1 .

From Fig. 3 we can see differences between U
(i+1)
MA,ν=1,i(s) with

i = 0, 2, 4, which are rather small and have nonzero values around

the position s = Λ2i (similar to above results in Euclidean space).



6. Bjorken sum rule

The polarized Bjorken sum rule is defined as the difference be-

tween proton and neutron polarized structure function (SFs) g1

integrated over the whole x interval

Γ
p−n
1 (Q2) =

∫ 1
0 dx [g

p
1(x,Q

2)− gn1 (x,Q
2)].

Based on the various SF measurements, Γ
p−n
1 (Q2) has been ex-

tracted at various values of squared momenta Q2
j (0.054 GeV2 ≤

Q2
j < 5 GeV2).

Theoretically, it has the Operator Produxt Expansion form

Γ
p−n
1 (Q2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

gA
gV

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

6
(1−DBS(Q

2)) +
∞
∑

i=2

µ2i(Q
2)

Q2i−2 ,

where |gA/gV |=1.2723 ± 0.0023 is the ratio of the nucleon ax-

ial charge, (1 − DBS(Q
2)) is the leading-twist contribution, and

µ2i/Q
2i−2 is the higher-twist contributions.



Since we will consider very low Q2 values, the above representa-

tion of the higher-twist contributions are not so convenient and it

is better to use so-called its “massive” conter-part

(Teryaev: 2013), (Khandramai,Teryaev,Gabdrakhmanov: 2016,2017):

Γ
p−n
1 (Q2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

gA
gV

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

6
(1−DBS(Q

2)) +
µ̃4

Q2 +M2 ,

where the values of µ̃ and M2 has been fitted in

(Ayala,Cvetič,Kotikov,Shaikhatdenov: 2018) in the different types

of models for analytic QCD.



The perturbative part has the following form

DBS(Q
2) =

4

β0
as



1 + d1as + d2a
2
s + d3a

3
s





=
4

β0



ã1 + d̃1ã2 + d̃2ã3 + d̃3ã4


 ,

where

d̃1 = d1, d̃2 = d2 − b1d1, d̃3 = d3 −
5

2
b1d2 + (

5

2
b21 − b2) d1,

For f = 3 case, we have

d̃1 = 1.59, d̃2 = 2.51, d̃3 = 10.58 .

In the MA model, the perturbative part has the form:

DMA,BS(Q
2) =

4

β0
(A

(k)
MA,k−1 +

k
∑

m=2
d̃m−1 Ã

(k)
MA,ν=m,k−1) .

Moreover, from (Ayala,Cvetič,Kotikov,Shaikhatdenov: 2018)

it is possible tom see that

M2 = 0.439, µ̃4 = −0.082 .



6.1 Discussions
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Figure 4: The results for Γp−n
1 (Q2) in the first four orders of perturbation theory with the “massive” twist-four term.
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Figure 5: Same as in Fig. (4) but in analytic theory.



The results of calculations are shown in Figs. 4 and 5. Here we

use the Q2-independent M and µ̃4 values and the twist-two parts

shown above for the cases of usual PT and APT, respectively.

As can be seen in Fig. 4, results obtained using usual couplants

are good only at LO and deteriorate as the PT order increases. The

good agreement at LO is due to the use of ΛLO, which is small, and

therefore the investigated range of Q2 is higher than Λ2LO. Visually,

the results are close to those obtained in

(Khandramai,Pasechnik,Shirkov,Solovtsova,Teryaev: 2012),

where the usual twist-four form has been used.



Thus, the usage of the “massive” twist-four form does not im-

prove the results, since at Q2 → Λ2i usual couplants become to

be singular, that leads to large and negative results for the twist-

two part. With increasing the PT order usual couplants become

to be singular at larger Q2 values (see Fig. 1) and the Bjorken

sum rule tends to negative values with increasing values of Q2. So,

the discrepancy between theory and experiment increases with the

increase in the PT order.

In the case of using MA couplants, our results are close to those

obtained in (Ayala,Cvetič,Kotikov,Shaikhatdenov: 2018),

which is not surprising, since we used the parameters, obtained in

this paper. Moreover, we see that the results based on different

orders of perturbation theory are close to each other, in contrast

to the case of using the usual couplants.



7. Conclusions

In this talk, we have showen results of several models of QCD

analytic coupland.

We have focused on the introduction of the Shirkov-Solovtsov and

Bakulev-Mikhailov-Stefanis approaches and their recent extension

beyond the leading order of perturbation theory.

We have considered 1/L-expansions of the ν-derivatives of the

strong couplant as expressed as combinations of operators R̂m

applied to the LO couplant a
(1)
s .

Applying these operators to the ν-derivatives of the LO MA cou-

plants A
(1)
MA and U

(1)
MA, we have got different representations for

the ν-derivatives of the MA couplants: Ã
(i)
MA,ν in Euclidean space

and Ũ
(i)
MA,ν in Minkowski space, i.e. , in each i-order of PT.



The high-order corrections are negligible in the Q2 → 0 and

Q2 → ∞ asymptotics and are nonzero in a neighborhood of the

point Q2 = Λ2. Thus, in fact, they are really only small corrections

to the LO MA couplant A
(1)
MA,ν(Q

2).

As can be clearly seen, all our results have a compact form and

do not contain complicated special functions, such as the Lambert

W -function (Magradze: 1999), which already appears in two-loop

order as an exact solution to the usual couplant and which was

used to estimate the MA couplants in (Bakulev,Mikhailov,Stefanis:

2010).



As a example, we considered the Bjorken sum rule and obtained

results similar to previous studies in

(Pasechnik,Shirkov,Teryaev,Solovtsova,Khandramai: 2008,2009,2011),

(Ayala,Cvetic,Kotikov,Shaikhatdenov: 2018) because the high or-

der corrections are small. The results based on usual perturbation

theory do not not agree with the experimental data at Q2 ≤ 1.5

GeV2. MA APT leads to good agreement with the data when we

used the “massive” version for high-twist contributions.

In the future, we plan to finish the timelike case.


