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Abstract. The LUXE experiment is a new experiment in planning at DESY Hamburg,
which will study Quantum Electrodynamics at the strong-field frontier. LUXE intends to
measure the positron production rate in this unprecedented regime by using, among others,
a silicon tracking detector. The large number of expected positrons traversing the sensitive
detector layers results in an extremely challenging combinatorial problem, which can become
computationally expensive for classical computers. This paper investigates the potential use
of gate-based quantum computers for pattern recognition in track reconstruction. Approaches
based on a quadratic unconstrained binary optimisation and a quantum graph neural network
are investigated and compared with a classical track reconstruction algorithm.

1. Introduction1

The LUXE experiment(LASER Und XFEL Experiment) [1] at DESY and the European XFEL2

(Eu.XFEL) aims to study
:
at

:::::::::
studying

:
strong-field QED processes in the interactions of a high-3

intensity optical laser and the 16.5 GeV electron beam of the Eu.XFEL
::::::::
(e−-laser

::::::::::
collisions),4

as well as with high-energy secondary photons. A strong background field is provided by a5

Terawatt-scale laser pulse and enhanced by the Lorentz boost of the electrons, allowing LUXE6

to explore a previously uncharted intensity regime.7



In this regime, one of the main goals of the LUXE experiment is to measure the positron rate
as a function of the laser intensity parameter ξ, defined as

ξ =
√
4πα

ϵL
ωLme

=
meϵL
ωLϵcr

, (1)

where α is the fine structure constant, ϵL is the laser field strength, ωL is the frequency of8

the laser, me is the electron mass, and ϵcr is the critical field strength, also known as the9

Schwinger limit [2]. The measured positron rate will be compared to theoretical predictions10

from strong-field QED. When considering electron-laser collisions, the most important process11

is the non-linear Compton scattering [3, 4]. In non-linear Compton scattering, the incident12

electron absorbs multiple laser photons, emitting a Compton photon, which can then interact13

again with the laser field to produce e+e−
::::::::::::::::
electron-positron

:
pairs [5, 6, 7]. The expected number14

of positrons per bunch crossing
:::::
(BX) as a function of ξ spans over ten

:::::
eight

:
orders of magnitude,15

as shown in Figure 1.16
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Figure 1. Number of positrons per bunch crossing produced in electron (e−)-laser collisions as
a function of the laser field intensity parameter ξ, for different values of the laser power.

::::::
Based

::
on

:::::
Ref.

:::
[1]

:
,
:::::
with

::::::::::
additional

::::::::::
simulated

:::::::
events.

The measurement of the positron rate will be performed by a dedicated set of detectors17

comprising a silicon pixel tracker and a calorimeter. The wide range of expected positron rates18

poses a significant challenge to event reconstruction, especially within the tracker, where the19

large number of energy deposits could lead to finding spurious tracks that do not correspond to20

a real particle.21

The two main tracking challenges are to maintain good linearity
:
a

::::::
linear

::::::::::::
dependence

::
of

::::
the22

:::::::
number

:::
of

:::::::::::::
reconstructed

:::::::
tracks

::
as

::
a
:::::::::
function

::
of

::::
the

::::::::
number

::
of

::::::::
charged

:::::::::
particles

::
in

::::
the

::::::
event

:
up23

to very high
:::::::
particle

:
multiplicities and to keep a very low background rate below 10−3 per bunch24

crossing at low ξ. This work investigates the potential use of gate-based quantum computers for25

pattern recognition in track reconstruction and compares the obtained performance to classical26

methods. Analogous studies have focused on track reconstruction in the proton-proton collision27

environments of the Large Hadron Collider and its upgrades, by using quantum annealers [8]28



:::::
[8, 9], quantum associative memories [10] or quantum graph neural networks [11]. A review of29

various quantum computing algorithms studied for charged particle tracking can be found in30

Ref. [12].31

This paper is organised as follows. A brief characterisation of the current proposed detector32

layout and the data-taking environment are given in Section 2. The datasets
::::
data

::::
sets

:
used in33

this study are presented in Section 3, together with the dedicated simulation software. Section 434

presents the methodology used for the reconstruction of the simulated data. The results are35

discussed in Section 5
:
.
:::::
The

:::::::::
summary

:::::
and

:::::::::::
conclusion

:::
are

::::::
given

:::
in

::::::::
Section

:
6, while an outlook36

on future developments and work is discussed in Section 7. A summary of the conclusions is37

presented in Section 6.38

2. The LUXE experiment39

This work focuses on the reconstruction of the electron-laser collisions, as these are expected40

to produce the largest number of outgoing particles. In this setup, the electron beam from the41

Eu.XFEL is guided to the interaction point, where it collides with a laser beam. The experiment42

plans to start taking data with a 40 TW laser, which will later be upgraded to reach 350 TW.43

The electrons and positrons produced in the electron-laser interactions are deflected by a 0.95 T44

dipole magnet and then detected by a positron detection system, as shown in Figure 2
:
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Figure 2. Schematic layout of the positron detection system in LUXE for the electron-laser
setup. Adapted from Ref. [1].

The outgoing positrons are detected using a silicon pixel tracking detector. The tracker46

consists of four layers, each comprising two ≈ 27 cm long staves placed next to each other, which47

overlap partially, as illustrated in the figure. The layers are placed
:::::::
spaced 10 cm away from each48

other along the beam axis. The average thickness of the staves is X/X0 = 0.357%
::::::
0.357%

:::
of49

:
a
::::::::::
radiation

:::::::
length. Each stave contains nine sensors, composed of 512 × 1024 pixels of size50

27 × 29 µm2. The pixel sensors have a detection efficiency above 99%, a noise hit rate much51

below 10−5 and a spatial resolution of around 5 µm.52

3. Simulated data53

Monte Carlo (MC) simulated event samples are used to perform this study. The calculation for54

the electron-laser interaction processes was performed with the PTARMIGAN [13] MC
::::::
Monte

::::::
Carlo55

1 LUXE uses a right-handed coordinate system with its origin at the nominal interaction point and the z-axis
along the beam line. The y-axis points upwards, and the x-axis points towards the positron detection system.



event generation software. The electron beam parameters were chosen as follows: εe = 16.5.
:::::
The56

:::::::::
incoming

::::::::
electron

:::::::
energy

::
εe::

is
::::
set

::
to

:::::
16.5GeV, the beam spot

:::
size

:
σx = σy = 5 µm, σz = 24 µm,57

and the normalised emittance 1.4 mm·mrad. The simulation of the laser assumes a 40 TW laser,58

an energy after compression of 1.2 J and a pulse length of 30 fs. The laser pulse is modelled59

as having a Gaussian profile both in the longitudinal and in the transverse direction. The laser60

spot waist, which for a Gaussian pulse corresponds to 2σ in intensity, decreases with ξ and varies61

between 6 µm and 3 µm.62

The particles produced in the electron-laser interactions are propagated through the dipole63

magnet and tracking detector using a custom fast simulation that was developed for this study.64

The fast simulation uses parameterised smearing functions to model the effects of multiple65

scattering, detector resolution and inefficiencies. Furthermore, a simplified detector layout is66

considered. In this layout, the four detection layers are not split into two overlapping staves,67

but simply have a double length with no discontinuities.68

To perform these studies, data sets corresponding to electron-laser interactions were generated69

with ξ values ranging from three to seven and a laser power of 40 TW. This corresponds to70

positron multiplicities ranging between 1 · 102 and 7 · 104. Figure 3 shows the resulting expected71

positron energy distribution for the three generated ξ values and the number of hits/mm2 in72

the first detector layer as a function of the x and y coordinates for ξ = 7. The double-peaked73

structure visible in the x, y plane reflects the initial positron momentum distribution along the74

yaxis
::::
-axis

:
at the interaction point.75
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Figure 3. Left: positron energy distribution for different values of ξ, normalised to unit area.

::::::
Based

:::
on

::::
Ref.

::::
[1],

::::::
using

::::
the

:::::
data

::::
sets

::::::::::
generated

::::
for

::::
this

::::::
work.

:
Right: number of hits/mm2 in

the first detector layer as a function of the x and y coordinates for ξ = 7.

4. Methodology76

The starting point for the pattern recognition is
:::
are either doublets or triplets, defined as a set of77

two or three hits in consecutive detector layers. A pre-selection is applied to the initial doublet78

or triplet candidates to reduce the combinatorial candidates while keeping the efficiency as close79

as possible to 100% for the doublets and triplets matching with a real positron. Doublets are80

formed first and are required to satisfy a pre-selection based on the ratio δx/x0, where δx is81

the difference of the x coordinates for the two hits composing the doublet, while x0 indicates82

the x coordinate on the detector layer closest to the IP
::::::::::
interaction

::::::
point. A window of three83

standard deviations around the expected mean value of δx/x0 for real doublets, as determined84

in the simulation, is used for this selection. Triplets are subsequently constructed by combining85
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Figure 4. Left: distribution
:::::::::::
Distribution

:
of doublet δx/x0 with red dashed lines indicating

the range of the pre-selection. Right: distribution
::::::::::::
Distribution

:
of angle difference δθ with red

dashed lines indicating the upper limit allowed by the pre-selection.

doublet candidates with the requirement on the maximum angle difference δθ =
√

δθ2xz + δθ2yz86

of the doublet pairsallowed by multiple scattering in the detector. The maximum scattering87

threshold is chosen to be 1 mrad
::::
and

::::
was

::::::::::
optimised

::::::
taking

:::::
into

::::::::
account

::::::::
multiple

::::::::::
scattering

:::::
with88

:::
the

:::::::::
detector

::::::::
material. Since triplets consist of three hits, they are formed from either the first89

to the third layer or from the second to the fourth layer.90

Figure 4 shows the distributions of δx/x0 and δθ for doublets and triplets originating from91

real positrons, shown separately for low energy and high energy
::::::::::
low-energy

:::::
and

::::::::::::
high-energy92

positrons, as well as the chosen thresholds. The distributions are obtained using ξ = 7, but are93

generally ξ-independent. The δx/x0 distribution shows a slight dependence on positron energy,94

while the triplet δθ distribution demonstrates that the scattering is more severe
:::::::::::
pronounced for95

lower energy positrons. The resulting pre-selection efficiencies are shown in Figure 5 for both96

doublet and triplet finding, in the case of electron-laser interaction for ξ = 7. The pre-selection97

requirements are found to be nearly fully efficient for the whole energy range, with a moderate98

efficiency loss, at the level of 14
:::
16% for positron energies below 2 GeV, mostly due to multiple99

scattering with the detector material. Figure 5 also shows the number of doublets and triplets100

passing the pre-selection criteria as a function of ξ.101

Three pattern recognition methods are employed and systematically compared to reconstruct102

tracks from the detector hits. The first method formulates the tracking problem as a quadratic103

unconstrained binary optimisation (QUBO), similar to the one used in Ref. [8], which is then104

processed with quantum algorithms. The second method uses a hybrid quantum-classical graph105

neural network approach [11], but is limited to specific scenarios compatible with the available106

devices. Finally, the results obtained with the quantum approaches are accompanied by an107

optimised classical approach based on a Kalman filter [14, 15], which is used as a state-of-the-108

art reference.109

4.1. Quadratic unconstrained binary optimisation110

In this approach, the pairs of triplet candidates that can be combined to form tracks are identified
by solving a QUBO problem. The QUBO is expressed via the objective function

O =
N∑
i

∑
j<i

bijTiTj +
N∑
i=1

aiTi, (2)



where Ti and Tj are triplets of hits , Ti, Tj ∈ {0, 1}, and ai and bij are coefficients. The
:::::::
triplets111

::
Ti::::

and
:::
Tj::::

can
:::::::
assume

:::::::
binary

:::::::
values.

:::::
The

::::::::
solution

::
of

::::
the

:::::::
QUBO

:::::::::::
determines

:::::::::
whether

::::
each

:::::::
triplet112

:
is
:::::::::::
considered

:::::
false

::::
and

:::::::::
rejected,

:::
by

::::::
being

:::
set

:::
to

:::::
zero,

::
or

:::::::::
selected,

:::
by

::::::
being

:::
set

:::
to

::::
one.

:::::
The

:
linear113

term of the QUBO weighs the individual triplets by their quality quantified by the coefficient114

ai. The ai are set to the value of δθ scaled to populate the [−1; 1] range. The quadratic term115

represents the interactions between triplet pairs, where the coefficient bij characterises their116

compatibility. The coefficient bij is computed from the doublets forming the two considered117

triplets. It is taken to be the norm of the sum of the standard deviations of the doublet angles118

in the xy and xz
::
yz

:
planes, translated and scaled to populate the [−1;−0.9] range. If the two119

triplets are in conflict, it is set to one. If the triplets are not connected, it is set to zero.120

The QUBO in Eq. (2) can be mapped to an Ising Hamiltonian
:::
by

:::::::::
mapping

::::::::::::::::
Ti → (1 + Zi)/2,121

::::::
where

::
Zi:::

is
:::
the

::::::
Pauli

:::::::
matrix. Minimising the QUBO is equivalent to finding the ground state of122

the Hamiltonian. The Variational Quantum Eigensolver (VQE) [16] method, a hybrid quantum-123

classical algorithm, was used to find the ground state. In this work, the data is processed124

using the VQE implementation available in the Qiskit [17]
:::::
[18] library. No sources of noise or125

decoherence are included in the quantum circuit simulations used in this study and a simple126

entangled TwoLocalansatz with RY gates and a linear CNOT entangler is chosen, as shown in127

Figure 6. A fully entangled ansatz with a single
:::
An

:::::::
ansatz

:::::
with

::::::::
CNOTs

:::::::::
between

:::
all

::::::::
possible128

:::::
pairs

::::
and

::
a
::::::
single

:::::::
circuit

:
repetition was found to lead to results compatible within statistical129

uncertainties, but was discarded for simplicity. The selected optimiser is
:::
the

:
Nakanishi-Fujii-130

Todo (NFT) [19]
::::::::::
algorithm. The ansatz and optimiser were selected as those leading to the131

highest track reconstruction efficiency in previous work [20].132

The number of qubits required to represent the tracking problem as a QUBO is determined by133

the number of triplet candidates. Due to the limited number of qubits available on the current134

quantum devices, the QUBO in this work is partitioned into QUBOs of smaller size (referred135

to as sub-QUBOs) to be solved iteratively. For small enough sub-QUBO sizes, such as the size136

7 used in this work, an exact solution using matrix diagonalisation is possible and is used as a137

benchmark.138

Figure 7 summarises the workflow, including the QUBO solving process. An initial binary139

vector is defined by assigning the value 1 to all the triplet candidates. The vector is sorted in140

order of impact, which is assessed by the change in the value of the objective function when a141
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Figure 6. Layout of the variational quantum circuit using the TwoLocal ansatz with RY gates
and a linear CNOT entangling pattern. For simplicity, only four qubits are shown.

bit flip is performed. The splitting into sub-QUBOs is done by partitioning the sorted vector142

into sub-QUBOs of the desired size. The retain sensitivity to the connections outside of each143

sub-QUBO when computing the value of the objective function, each
:::::
Each triplet is assigned an144

additional constant term representing the sum of all interactions with triplets outside of the sub-145

QUBO
::
to

:::::::
retain

::::::::::
sensitivity

:::
to

::::
the

:::::::::::
connections

::::::::
outside

::
of

:::::
each

::::::::::::
sub-QUBO

:::::
when

:::::::::::
computing

::::
the146

:::::
value

::
of

::::
the

::::::::::
objective

::::::::
function. After the sub-QUBOs are solved, the solution is combinedand147

a tabu search is performed. These steps are repeated for a number of iterations. The triplets148

selected by the QUBO minimisation are retained and matched to form track candidates.149

Figure 7. Sketch of the full QUBO solving procedure.

Alternative algorithms for finding the optimal QUBO solution, such as QAOA (Quantum150

Approximate Optimization Algorithm) [21], were briefly investigated and found to lead to151

significantly worse performance. A dedicated optimisation and characterisation of the results of152

such algorithm is left to future work.153



4.2. Quantum graph neural network154

This approach is based on a graph neural network (NN)
:::::::::
[23, 24] that consists of both classical155

NN layers and quantum circuits. The graph is constructed from doublets, where the hits are156

nodes and the connections between hits are edges. All nodes of consecutive layers are connected157

and only the ones that satisfy the pre-selection criteria are kept. The quantum graph neural158

network (QGNN) model
::::::
follows

::::
the

::::::::::::::::
implementation

::
of

:::::
Ref.

:::::
[11]

:::
and

:
consists of three networks.159

The InputNet takes the input node features,
:::
i.e.

::
the three spatial coordinates, and produces160

hidden node features. For this purpose,
:
a single fully connected (FC) NN layer that has 10161

neurons with a tanh activation function is used. The EdgeNet takes all connected node pairs162

as input and produces a scalar edge feature for each of them. This will later be the prediction163

score of the model for each doublet, as this model is essentially a segment classifier. Circuit 10164

with two layers and 10 qubits is selected for this task based on previous work [11]. The NodeNet165

considers each node and nodes that that are connected to it to update the hidden node features.166

The architecture of the NodeNet is similar to EdgeNet, but
::
it

:
uses the tanh activation function167

for the last layer as the NodeNet is an intermediate step and sigmoid activation functions are168

known to lead to vanishing gradients.169

The quantum graph neural network (QGNN) model first starts with the InputNet. Then,170

the EdgeNet and NodeNet are applied four times to allow the node features to be updated171

using farther nodes, as determined in
::
a scan of the optimal model parameters. At the end, the172

EdgeNet is applied one last time to obtain the predictions for each doublet connection. Finally,173

the edges are discarded if the prediction value is less than 0.5 and the rest are retained and used174

to form track candidates.175

4.3. Combinatorial Kalman filter176

A tracking algorithm based on A Common Tracking Software (ACTS) toolkit [25] with the177

combinatorial Kalman Filter (CKF) technique for track finding and fitting is used as a178

benchmark. In this classical tracking method, track finding starts from seeds, which are the179

triplets formed from the first three detector layers. An initial estimate of track parameters is180

obtained from the seed and is used to predict the next hit and is updated progressively, with181

the measurement search performed at the same time as the fit.182

5. Final track selection183

4.1.
:::::
Final

:::::
track

:::::::::
selection184

Track candidates are required to have four hits, either found directly with the classical CKF185

method or by combining selected doublets or triplets into quadruplets. The track candidates are186

fitted to straight lines with the least-square method. A track candidate is considered matched187

if it has at least three out of four hits matched to the same particle. Figure 8
:::::
(left)

:
shows the188

duplication rate, i.e. the fraction of matched particles that are matched to more than one track189

candidate, as a function of ξ.190

To resolve the overlaps between the track candidates and to reject fake tracks, an ambiguity191

resolution step is performed. The track candidates are scored based on the χ2 of the track fit192

, shown in Figure 8, and the number of shared hits with other track candidates. The track193

candidates with the most shared hits are evaluated first. They are compared to the other track194

candidates sharing the same hits and the ones with worse χ2 of the track fit are rejected. The195

procedure is repeated until all remaining tracks no longer have shared hits. Retaining tracks196

with
::::
have

:
up to one shared hitwould increase the efficiency by up to two percent for ξ ≥ 5, but197

was not
:
.
::::::::
Figure

::
8

:::::::
(right)

::::::
shows

::::
the

::::::
effect

:::
of

::::
the

::::::::::
ambiguity

:::::::::::
resolution

:::
on

:::::::::
matched

::::
and

:::::
fake198

::::::
tracks

:::
for

::
a
:::::::
QUBO

:::::::
solved

::::::
using

:::::::
matrix

:::::::::::::::
diagonalisation

:::
in

::
a

:::
BX

::::::
with

::::::
ξ = 7.

:::::
This

:::::::::
scenario

::::
was199

:::::::
selected

:::
to

::::::
show

:::
the

::::::
effect

:::
for

::::
the

::::::::
highest

::::::::
particle

:::::::::::
multiplicity

:
considered in this work.200
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::::
The

::::::::
results

:::::
from

::::
the

:::::::
exact

:::::::
matrix

::::::::::::::
diagonalisation

::::
are

::::::::
shown

:::
as

::
a
::::
line

::::
to

:::::
help

::::
the

::::::::::::
comparison

:::::::::
between

::::::::::
methods.

::
Right: χ2

distribution of the fitted track candidates found using the QUBO approach
::::
with

::::::
exact

:::::::
matrix

::::::::::::::
diagonalisation, shown separately for matched

::::::
(blue)

:
and fake

:::::
(red)

::::::
track

:
candidateswhere

:
.

::::
The

:::::::
dashed

::::::
lines

:::::::::
represent

:
the fake

:::::
track

:
candidates are scaled by a factor

:::::
from

::::
the

:::::::
QUBO

::::::::
solution,

::::::
while

::::
the

::::
full

:::::
lines

::::::::::
represent

:::
the

:::::::::
selected

::::::
tracks

::::::
after

:::
the

:::::::::::
resolution of 10 for ease of

comparison
:::::::::::::
reconstruction

::::::::::::
ambiguities.

5. Results201

The performance of various tracking methods is assessed using the efficiency and the fake rate as
metrics, which are computed on the final set of tracks. The efficiency and fake rate are defined
as

Efficiency =
Nmatched

tracks

Ngenerated
tracks

and Fake rate =
N fake

tracks

N reconstructed
tracks

. (3)

Figure 9 shows the average track reconstruction efficiency and fake rate as a function of the202

laser field intensity parameter ξ for all tested approaches: QUBO (both with VQE and the203

exact solution via matrix diagonalisation), QGNN-based tracking and conventional CKF-based204

tracking.205

The performance of CKF-based tracking is used as a realistic
::::::::::::::
state-of-the-art

:
benchmark.206

The excellent performance of the classical method deteriorates with ξ, because of the increasing207

hit density. The results using the exact matrix diagonalisation to solve the QUBO are well208

aligned with the CKF algorithm and achieve a higher efficiency by 1–2% for large values of ξ209

at the cost of an increase in the fake rate of approximately factor of two. The rate of purely210

combinatorial tracks, i.e. tracks reconstructed from four hits belonging to four distinct truth211

particles, accounts for about 50% of the total fake rate, independently from
::
of

:
the reconstruction212

algorithm considered. The results for VQE are in excellent agreement, within the statistical213

uncertainties, with those from the matrix diagonalisation.214

The results for the QGNN-based tracking are shown up to ξ = 4, above which simulating the215

quantum circuits becomes computationally prohibitive
::::
with

::::
the

::::::::::
currently

:::::::::
available

:::::::::
resources.216

The reconstruction efficiency is found to be compatible with the other methods, with a217

substantially higher fake rate. Further work aimed at optimising the selection on the EdgeNet218

predictions could mitigate this effect. The QGNN results were validated by implementing a219

classical GNN [23, 24] with the same architecture, but 128 node hidden features, finding excellent220

agreement.
::::
For

::::::
ξ = 3,

::::
two

::::::
values

::
of

::::::::
QGNN

:::::::::
efficiency

:::
are

:::::::
shown.

:::::
The

:::::::
empty

::::::::
triangle

::
is

:::
the

::::::
result221
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Figure 9. Left: track
:::::
Track

::
reconstruction efficiency as a function of the field intensity

parameter. Right: track
::::::
Track

:
fake rate as a function of ξ.

::::
The

:::::::
results

::::::
from

::::
the

::::::
exact

::::::
matrix

::::::::::::::::
diagonalisation

::::
are

:::::::
shown

:::
as

::
a
:::::
line

:::
to

:::::
help

::::
the

::::::::::::
comparison

::::::::
between

::::::::::
methods.

::::::
The

::::::
empty

:::::::::
triangles

:::::
show

::::
the

:::::::
results

:::
of

:
a
::::::::
QGNN

::::::::
training

:::::::
limited

:::
to

::::
100

::::::
BXs.

::
of

::
a

::::::::
training

::::::
based

:::
on

::::
100

::::::
BXs,

:::
i.e.

::::
the

::::::
same

::::::::
number

::
of

::::
BX

:::::
used

:::
to

:::::::::
evaluate

:::
the

:::::::::::::
performance222

::
of

::::
the

:::::
CKF

:::::
and

:::::::::::::
QUBO-based

::::::::::
methods,

::::::
using

:::::
90%

:::
of

::::
the

:::::
data

:::
for

::::
the

:::::::::
training

::
of

::::
the

:::::::
model223

::::
and

::::
10%

::::
for

::::
the

::::::::::
inference.

:::::::::
Because

::
of

::::
the

::::::::
modest

::::::::
particle

::::::::::::
multiplicity

:::::::::
expected

:::
at

::::::
ξ = 3,

::::
the224

:::::::
number

:::
of

::::
true

:::::::
tracks

:::::
used

::
in

::::
the

:::::::
QGNN

:::::::::
training

::
is

::::
too

:::::
small

:::
to

:::::::
obtain

:::
an

::::::::
optimal

::::::
result.

:::::
The225

:::
full

:::::::::
triangles

:::::::
shows

::::
the

:::::::::
efficiency

:::::::::
obtained

:::::
with

::::
the

::::::::
QGNN

::::::::
training

:::::::
based

:::
on

:::::
data

::::::::::
generated226

::::
with

:::::::
ξ = 4,

::::::
which

:::::::::::::
corresponds

:::
to

::
a

:::::::::::::
substantially

::::::
larger

::::
set

:::
of

::::
true

::::::::
tracks,

:::::::::
restoring

::
a
:::::::
higher227

:::::::::
efficiency.

:::::
The

::::::::::::
dependency

::
of

::::
the

::::::
track

::::::::::::::
reconstruction

::::::::::
efficiency

::
of

::::
the

::::::::::::
GNN-based

:::::::::::
approaches228

:::
was

::::::::
further

::::::::
studied

:::
in

::::::::
e−-laser

::::::::::
collisions

:::::
with

::::::
ξ = 3

:::::::::::
comparing

::::
the

:::::::
results

:::::::::
obtained

:::::
with

::::
the229

:::::::
QGNN

::::
and

:::::
with

::
a

::::::::
classical

::::::
GNN

:::
for

:::::::::
different

:::::::::
numbers

::
of

:::::
true

::::::
tracks

:::::
used

:::
in

:::
the

:::::::::
training.

:::::
The230

:::::::
findings

::::
are

::::::::::
presented

:::
in

:::::::
Figure

::::
10.

:::::
The

:::::::::
efficiency

:::::::
results

::::
for

::::
the

:::::::
largest

::::::
track

:::::::::::
multiplicity

:::
of231

::::
both

:::::::
GNNs

::::
are

::::::::
obtained

::::::::::::
performing

:::
the

:::::::::
training

::
on

:::::::
events

:::::
with

::
a

::::::
larger

:::::
value

:::
of

::
ξ,

::::::::::::
respectively232

::
of

::::::
ξ = 5

:::
for

::::
the

:::::::::
classical

::::::
GNN

::::
and

::::::
ξ = 4

::::
for

::::
the

::::::::
QGNN.

::::
All

::::::
other

:::::
data

:::::::
points

::::
are

:::::::::
obtained233

::
by

:::::::::::
increasing

:::
the

::::::::
number

:::
of

:::::
BXs

:::::::::::
considered

::
at

:::::::
ξ = 3.

:::::::
While

::
it

::
is

::::
not

:::::::::
expected

::::
for

::::
the

:::::::
QGNN234

::::
and

::::::::
classical

::::::
GNN

:::
to

:::::::::
perfectly

::::::::
overlap

::
in

:::::::::::::
performance

::::::::
because

:::
of

::::
the

::::::::
slightly

::::::::
different

:::::::
model235

:::::::::::::
architectures,

::::
the

:::::::
results

:::::
show

::::::::::::
compatible

::::::
trends

::::::
when

::::::::::::
considering

::::::::::
additional

:::::
data

::::
for

::
a

:::::
fixed236

:::::
value

::
of

::
ξ
::::
and

::::::
using

::::::::
models

:::::::
trained

:::
on

:::::
BXs

:::::
with

::::::
larger

:::
ξ.

:
237

Figure 11 shows the track reconstruction efficiency and fake rates
::::
rate

:
as a function of the238

true positron energy for the case of ξ = 5, together with the positron energy distribution.239

The
::
for

::::
the

:
CKF and QUBO-based tracking

:::::::::
methods.

:::::
The

:::::::::
methods show similar behaviours,240

with a decrease in the region corresponding the highest detector occupancy. Because of effects241

coming from the propagation through the magnetic field and from the longitudinal size of the242

interaction region, the maximum occupancy shown in Figure 3, does not correspond to the243

maximum of the positron energy distribution. The fake rate peaks in the highest occupancy244

region, consistently the constant offset of approximately a factor of two observed
::::
The

::::::::
reduced245

:::::::::
efficiency

::
of

::::
the

:::::::::::::
QUBO-based

:::::::::
methods

::::
for

:::::::::
positrons

:::::
with

:::
an

:::::::
energy

::::::
below

::
3
:::::
GeV

::
is

:::::::::::
dominated246

::
by

::::
the

:::::::::::::
pre-selection

:::::::::
efficiency

:::::::
shown

:
in Figure 9

:
5
::::::
(left).247

The average energy resolution of the reconstructed tracks was also compared between the248

different methods. The track energy resolution was found to be of 0.5% and independent of
:::
the249

reconstruction method within the statistical uncertainty of the analysed dataset
::::
data

:::
set.250
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efficiency
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as
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Figure 11. Left: track
:::::
Track

:
reconstruction efficiency as a function of the positron true energy

for ξ = 5. Right: track
::::::
Track fake rate as a function of the positron true

:::::::::
measured

:::::
track

:
energy

for ξ = 5.

5.1. Studies with quantum hardware251

The
:
A

:::::::::
detailed

:::::::::::
assessment

::
of

::::
the

:
performance of the VQE algorithm on QUBOs of size seven,252

chosen to be the same as the sub-QUBO size used in for the results based on quantum circuit253

simulation, was also evaluated with real quantum hardware (ibm nairobi). The performance is254

evaluated on a
::::
VQE

:::
in

::::::::
Section

::
5,

::::
was

:::::::::::
performed.

:
255

:
A
::
QUBO representing two nearby particles

:
,
:
leading to a total of seven triplets. Three256

different back-ends for the VQE are compared, each with 512 circuit evaluations (shots): an257

ideal simulation without noise , Fake Nairobi which is a simulated device with noise modelled258

after
:
,
::::
was

:::::::::
selected

:::
for

:::::
this

:::::
test.

:::::
The

::::::
VQE

::::::::
method

:::::
was

:::::::
applied

:::::
first

:::
in

:::
an

::::::
exact

:::::::::::
simulation259

:::::::::
assuming

:::
an

:::::
ideal

:::::::::
quantum

:::::::
device

:::::
with

:::::
shot

::::::
noise

:::::
only,

:::::
then

:::
in

:
a
:::::::::::
simulation

::::::::::
involving

::
a

:::::
noise260



::::::
model

:::::::::
extracted

:::::
from

:
a snapshot of the measured noise of the IBM Nairobi device and finally the261

:::::::::::
ibm nairobi

:::::::
device

::::::::::::::
(fake nairobi)

::::
and

:::::::
finally

::::
real

::::::::::
quantum

:::::::::
hardware

::
(ibm nairobidevice itself.262

A readout error mitigation is applied in all cases, and is refreshed
:
).

:
263

:::
For

:::::
each

::
of

::::::
these

:::::::::
scenarios,

::::
512

:::::::
circuit

:::::::::::
evaluations

:::::::
(shots)

:::::
were

:::::::::::
considered.

:::::::
When

:::::::::::
performing264

:::
the

::::::::::::::
computations

:::::
with

:::::::::::::
ibm nairobi,

::::
the

::::::::
readout

::::::
error

:::::::::::::
probabilities

:::::
were

:::::::::::
calibrated

:
every 30265

function evaluations of the optimiser.266

Figure 12 shows the probabilities of the returned results for these three scenarios, where the267

correct binary solution 0001111 is also the most probable.268
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Figure 12. Distribution of the returned results on a test QUBO composed of seven triplets. The
blue bars indicate the results obtained from 512 shots on the ibm nairobi quantum computer,
compared with

:
a
:
realistic and

:::
an ideal simulations

::::::::::
simulation

:::
of

:::
the

::::::
same

:::::::
system.

6. Outlook269

It was observed that the impact-based sorting of the binary vector leads to a significant fraction270

of trivially-solvable sub-QUBOs with no interacting triplets. Future work aimed at developing271

alternative algorithms for the sorting of the binary vector representing the triplet candidates272

and the splitting of the problem into sub-QUBOs, as well as optimising the scaling ranges for273

the ai and bij terms, will be aimed at reducing the computation time and the rate of fake tracks274

reconstructed with this method.275

While the initial study of the performance on real devices without error correction was276

performed on real quantum hardware (ibm nairobi) found promising results, a more systematic277

study of hybrid quantum-classical algorithms using NISQ-era devices will be performed in future278

work.279

The choice of the optimiser used for VQE has a significant impact on the probability to280

find the real minimum of the cost function, and a careful optimisation will be required when281

considering large sub-QUBO sizes.282

6. Conclusion283

This work investigated the use of hybrid quantum-classical algorithms, based respectively on a284

QUBO formulation or a quantum graph neural network, in track reconstruction and compared285

their performance with the results obtained with a state-of-the-art classical tracking method.286



In order to produce these results, a standalone fast simulation of the LUXE tracking detector287

was put in place as well as a software framework able to reconstruct tracks up to the maximum288

number of positrons expected during the data taking with a laser power of 40 TW.289

The results were analysed in terms of reconstruction efficiency, fake rate and energy resolution.290

Hybrid quantum-classical algorithms performed with gate-based quantum computers were found291

to lead to competitive results when compared to classical algorithms. For large particle292

multiplicities, a QUBO approach was found to have moderately higher efficiency than classical293

tracking, but a significant increase
::
in

:
the fake rate. It was not possible, due to limitations in294

the computing resources, to evaluate the performance of the approach based on quantum graph295

neural networks beyond few thousands of
:
a
::::
few

::::::::::
thousand

:
charged particles.296

Finally, few ideas for algorithm improvements were discussed.297

7.
:::::::::
Outlook298

::
It

::::
was

:::::::::
observed

::::
that

::::
the

:::::::::::::
impact-based

::::::::
sorting

::
of

::::
the

::::::
binary

:::::::
vector

:::::
leads

:::
to

::
a

::::::::::
significant

::::::::
fraction299

::
of

::::::::::::::::
trivially-solvable

:::::::::::::
sub-QUBOs

:::::
with

:::
no

:::::::::::
interacting

::::::::
triplets.

::::::::
Future

:::::
work

::::::
aimed

:::
at

:::::::::::
developing300

::::::::::
alternative

:::::::::::
algorithms

::::
for

::::
the

:::::::
sorting

:::
of

::::
the

:::::::
binary

:::::::
vector

::::::::::::
representing

::::
the

:::::::
triplet

:::::::::::
candidates301

::::
and

:::
the

:::::::::
splitting

:::
of

::::
the

::::::::
problem

:::::
into

:::::::::::::
sub-QUBOs,

::
as

:::::
well

:::
as

:::::::::::
optimising

:::
the

::::::::
scaling

:::::::
ranges

:::
for302

:::
the

:::
ai ::::

and
:::
bij::::::::::::

coefficients,
::::
will

:::
be

::::::
aimed

:::
at

:::::::::
reducing

::::
the

::::::::::::
computation

:::::
time

:::::
and

:::
the

:::::
rate

::
of

:::::
fake303

::::::
tracks

:::::::::::::
reconstructed

:::::
with

:::::
this

::::::::
method.

:
304

::::::
While

::::
the

::::::
initial

:::::::
study

:::
of

::::
the

:::::::::::::
performance

:::
on

:::::
real

::::::::
devices

::::::::
without

::::::
error

::::::::::
correction

:::::
was305

::::::::::
performed

:::
on

::::
real

:::::::::
quantum

::::::::::
hardware

:::::::::::::
(ibm nairobi)

::::::
found

::::::::::
promising

::::::::
results,

::
a

:::::
more

:::::::::::
systematic306

:::::
study

:::
of

::::::
hybrid

::::::::::::::::::
quantum-classical

:::::::::::
algorithms

:::::
using

::::::::::
NISQ-era

:::::::
devices

::::
will

:::
be

::::::::::
performed

:::
in

::::::
future307

:::::
work.

:
308

::::
The

::::::
choice

:::
of

::::
the

::::::::::
optimiser

:::::
used

::::
for

::::::
VQE

::::
has

::
a
:::::::::::
significant

:::::::
impact

::::
on

::::
the

:::::::::::
probability

:::
to309

::::
find

::::
the

::::
real

::::::::::
minimum

:::
of

::::
the

::::
cost

::::::::::
function,

::::
and

::
a
:::::::
careful

:::::::::::::
optimisation

::::
will

:::
be

:::::::::
required

::::::
when310

:::::::::::
considering

:::::
large

:::::::::::
sub-QUBO

::::::
sizes.

:
311
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Auxiliary material385
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0.929 ±0.003 0.929 ±0.003 Fake rate 0.030 ±0.002 0.030 ±0.002 0.030 ±0.002 0.030 ±0.002 0.030387

±0.002 0.030 ±0.002 Efficiency and fake rate are compared for various sub-QUBO sizes for ξ =388

5 using the exact matrix diagonalisation. The results are averaged over 10 bunch crossings.389

Algorithm Numpy Eigensolver VQE NFT VQE COBYLA Efficiency 0.980 ± 0.003 0.980 ±390
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sub-QUBO ms12.5 ± 3 711.6 ± 356 384 ± 109 Total processing time s113 ± 28 5494 ± 2476392

1721 ± 283 Efficiency, fake rate and processing time for three sub-QUBO solving methods for ξ393

= 4. Results are averaged over 10BX. A sub-QUBO size of 7 is used.394

Left: track reconstruction efficiency as a function of the field intensity parameter at various395

stages of the post-processing. Right: track fake rate as a function of ξ at various stages of the396

post-processing.397
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