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Abstract. The LUXE experiment is a new experiment in planning at DESY Hamburg, which
will study Quantum Electrodynamics at the strong-field frontier. LUXE intends to measure the
positron production rate in this unprecedented regime by using, among others, a silicon tracking
detector. The large number of expected positrons traversing the sensitive detector layers
results in an extremely challenging combinatorial problem, which can become computationally
expensive for classical computers. This paper investigates the potential

:::::
future

:
use of gate-

based quantum computers for pattern recognition in track reconstruction. Approaches based
on a quadratic unconstrained binary optimisation and a quantum graph neural network are
investigated

::
in

:::::::
classical

::::::::::
simulations

::
of
::::::::
quantum

:::::::
devices

:
and compared with a classical track

reconstruction algorithm.
:
A
:::::::
limited

:::
set

:::
of

::::::
studies

:::
is

:::::::::
performed

:::::
using

::::::::
quantum

:::::::::
hardware

:::::::::::
(ibm nairobi).

:

1. Introduction1

The LUXE experiment(LASER Und XFEL Experiment) [1] at DESY and the European XFEL2

(Eu.XFEL) aims at studying strong-field QED
:::::::::
Quantum

:::::::::::::::::
Electrodynamics

:::::::
(QED)

:
processes in3

the interactions of a high-intensity optical laser and the 16.5 GeV electron beam of the Eu.XFEL4

::::::::
(e−-laser

:::::::::::
collisions), as well as with high-energy secondary photons. A strong background field5



is provided by a Terawatt-scale laser pulse and enhanced by the Lorentz boost of the electrons,6

allowing LUXE to explore a previously uncharted intensity regime.7

In this regime, one of the main goals of the LUXE experiment is to measure the positron rate
as a function of the laser intensity parameter ξ, defined as

ξ =
√
4πα

ϵL
ωLme

=
meϵL
ωLϵcr

, (1)

where α is the fine structure constant, ϵL is the laser field strength, ωL is the frequency of8

the laser, me is the electron mass, and ϵcr is the critical field strength, also known as the9

Schwinger limit [2]. The measured positron rate will be compared to theoretical predictions10

from strong-field QED. When considering electron-laser collisions, the most important process11

is the non-linear Compton scattering [3, 4]. In non-linear Compton scattering, the incident12

electron absorbs multiple laser photons, emitting a Compton photon, which can then interact13

again with the laser field to produce e+e−
::::::::::::::::
electron-positron

:
pairs [5, 6, 7]. The expected number14

of positrons per bunch crossing (BX) as a function of ξ spans over eight orders of magnitude, as15

shown in Figure 1.16
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Figure 1. Number of positrons per bunch crossing produced in electron e−-laser collisions as
a function of the laser field intensity parameter ξ, for different values of the laser power. Based
on Ref. [1], with additional simulated events.

The measurement of the positron rate will be performed by a dedicated set of detectors17

comprising a silicon pixel tracker and a calorimeter. The wide range of expected positron rates18

poses a significant challenge to event reconstruction, especially within the tracker, where the19

large number of energy deposits could lead to finding spurious tracks that do not correspond to20

a real particle.21

The two main tracking challenges are to maintain a linear dependence of the number of22

reconstructed tracks as a function of the number of charged particles in the event up to very23

high particle multiplicities and to keep a very low background rate below 10−3 per bunch crossing24

at low ξ.25



This work investigates the potential
::::::
future

:
use of gate-based quantum computers for26

pattern recognition in track reconstruction and compares the obtained performance to classical27

methods. Analogous studies have focused on track reconstruction in the proton-proton collision28

environments of the Large Hadron Collider and its upgrades, by using quantum annealers [8, 9],29

quantum associative memories [10] or quantum graph neural networks [11]. A review of various30

quantum computing algorithms studied for charged particle tracking can be found in Ref. [12].31

::
In

::::
this

::::::
work,

:::
we

::::::::
present

:::
an

:::::::
update

:::
of

::::
our

::::::::
previous

::::::
study

:::
of

:::::
track

:::::::::::::::
reconstruction

:::::
with

:::::::::
quantum32

::::::::::
algorithms

:::
at

:::::::
LUXE

:::::::
[13, 14]

:
.
:

33

This paper is organised as follows. A brief characterisation of the current proposed detector34

layout and the data-taking environment are given in Section 2. The data sets used in this study35

are presented in Section 3, together with the dedicated simulation software. Section 4 presents36

the methodology used for the reconstruction of the simulated data. The results are discussed37

in Section 5. The summary and conclusion are given in Section 6, while an outlook on future38

developments and work is discussed in Section 7.39

2. The LUXE experiment40

This work focuses on the reconstruction of the electron-laser collisions, as these are expected41

to produce the largest number of outgoing particles. In this setup, the electron beam from42

the Eu.XFEL is guided to the interaction point
::::
(IP), where it collides with a laser beam. The43

experiment plans to start taking data with a 40 TW laser, which will later be upgraded to reach44

350 TW. The electrons and positrons produced in the electron-laser interactions are deflected by45

a 0.95 T dipole magnet and then detected by a positron detection system, as shown in Figure 2.146
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Figure 2. Schematic layout of the positron detection system in LUXE for the electron-laser
setup. Adapted from Ref. [1].

::::
The

::::::
angle

::
θ

::::::::::
represents

::::
the

::::::::
crossing

::::::
angle

:::
of

::::
the

::::::::::
Eu.XFEL

::::
and

::::
laser

::::::::
beams.

The outgoing positrons are detected using a silicon pixel tracking detector. The tracker47

consists of four layers, each comprising two ≈ 27 cm long staves placed next to each other,48

which overlap partially, as illustrated in the figure. The layers are spaced 10 cm away from each49

other along the beam axis. The average thickness of the staves is 0.357% of a radiation length.50

Each stave contains nine sensors, composed of 512× 1024 pixels of size 27× 29 µm2. The pixel51

1 LUXE uses a right-handed coordinate system with its origin at the nominal interaction point and the z-axis
along the beam line. The y-axis points upwards, and the x-axis points towards the positron detection system.



sensors have a detection efficiency above 99%, a noise hit rate much below 10−5 and a spatial52

resolution of around 5 µm.53

3. Simulated data54

Monte Carlo simulated event samples are used to perform this study. The calculation for the55

electron-laser interaction processes was performed with the PTARMIGAN [15] Monte Carlo event56

generation software. The electron beam parameters were chosen as follows. The incoming57

electron energy εe is set to 16.5GeV, the beam spot size
::
to

:
σx = σy = 5 µm, σz = 24 µm, and58

the normalised emittance
::
to

:
1.4 mm·mrad. The simulation of the laser assumes a 40 TW laser,59

an energy after compression of 1.2 J and a pulse length of 30 fs. The laser pulse is modelled60

as having a Gaussian profile both in the longitudinal and in the transverse direction. The laser61

spot waist, which for a Gaussian pulse corresponds to 2σ in intensity, decreases with ξ and varies62

between 6 µm and 3 µm.63

The particles produced in the electron-laser interactions are propagated through the dipole64

magnet and tracking detector using a custom fast simulation that was developed for this study.65

The fast simulation uses parameterised smearing functions to model the effects of multiple66

scattering, detector resolution and inefficiencies. Furthermore, a simplified detector layout is67

considered. In this layout, the four detection layers are not split into two overlapping staves,68

but simply have a double length with no discontinuities.69

To perform these studies, data sets corresponding to electron-laser interactions were generated70

with ξ values ranging from three to seven and a laser power of 40 TW. This corresponds to71

positron multiplicities ranging between 1 · 102 and 7 · 104. Figure 3 shows the resulting expected72

positron energy distribution for the three generated ξ values
:::::
(left)

:
and the number of hits/mm2

73

in the first detector layer as a function of the x and y coordinates for ξ = 7
::::::
(right). The double-74

peaked structure visible in the x, y
::
xy

:
plane reflects the initial positron momentum distribution75

along the y-axis at the interaction point.76
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Figure 3. Left: positron energy distribution for different values of ξ, normalised to unit area.
Based on Ref. [1], using the data sets generated for this work. Right: number of hits/mm2 in
the first detector layer as a function of the x and y coordinates for ξ = 7.

4. Methodology77

The starting point for the pattern recognition are either doublets or triplets, defined as a set of78

two or three hits in consecutive detector layers. A pre-selection is applied to the initial doublet79

or triplet candidates to reduce the combinatorial candidates while keeping the efficiency as close80



as possible to 100% for the doublets and triplets matching with a real positron. Doublets are81

formed first and are required to satisfy a pre-selection based on the ratio δx/x0, where δx is the82

difference of the x coordinates for the two hits composing the doublet, while x0 indicates the x83

coordinate on the detector layer closest to the interaction point. A window of three standard84

deviations around the expected meanI
:::::
mean value of δx/x0 for real doublets, as determined in85

the simulation, is used for this selection. Triplets are subsequently constructed by combining86

doublet candidates with the
:
a
:
requirement on the maximum angle difference δθ =

√
δθ2xz + δθ2yz87

of the doublet pairsallowed by multiple scattering in the detector. The maximum scattering88

threshold is chosen to be 1 mrad
::::
and

::::
was

::::::::::
optimised

::::::
taking

:::::
into

::::::::
account

::::::::
multiple

::::::::::
scattering

:::::
with89

:::
the

:::::::::
detector

:::::::::
material. Since triplets consist of three hits, they are formed from either

:::::
either90

::::
from

:
the first to the third layer or from the second to the fourth layer.91

Figure 4 shows the distributions of δx/x0 ::::
(left)

:
and δθ for doublets and triplets originating92

from real positrons
:::::::
(right)

:::
for

:::::::::
doublets

:::::::::::
originating

:::::
from

:::::
true

:::::::::
positron

::::::
tracks, shown separately93

for low-energy
:::::::::
(Ee+ < 3

::::::
GeV)

:
and high-energy positrons

:::::::::
(Ee+ > 3

::::::
GeV), as well as the chosen94

thresholds. The distributions are obtained using ξ = 7, but are generally ξ-independent. The95

δx/x0 distribution shows a slight dependence on positron energy, while the triplet δθ distribution96

demonstrates that the scattering is more pronounced for lower energy positrons. The resulting97

pre-selection efficiencies are shown in Figure 5
:::::
(left) for both doublet and triplet finding, in the98

case of electron-laser interaction for ξ = 7. The pre-selection requirements are found to be nearly99

fully efficient for the whole energy range, with a moderate efficiency loss, at the level of 16% for100

positron energies below 2 GeV, mostly due to multiple scattering with the detector material.101

Figure 5
::::::
(right) also shows the number of doublets and triplets passing the pre-selection criteria102

as a function of ξ.103
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Figure 4. Left: Distribution of doublet δx/x0 with red dashed lines indicating the range of the
pre-selection. Right: Distribution of angle difference δθ with red dashed lines

:::
line

:
indicating the

upper limit allowed by the pre-selection.

Three pattern recognition methods are employed and systematically compared to reconstruct104

tracks from the detector hits. The first method formulates the tracking problem as a quadratic105

unconstrained binary optimisation (QUBO), similar to the one used in Ref. [8], which is then106

processed with quantum algorithms. The second method uses a hybrid quantum-classical107

graph neural network approach [11], but is limited to specific scenarios compatible with the108

available devices. Finally, the results obtained with the quantum approaches are accompanied109

by
:::::::::
compared

:::
to

:
an optimised classical approach based on a Kalman filter [16, 17], which is used110

as a state-of-the-art reference.111
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::::::
(lower

::::::::
x-axis),

::::::::::::::
corresponding

:::
to

::::
the

:::::::
average

::::::::
number

:::
of

:::::::::
positrons

:::::::
(upper

::::::::
x-axis).

4.1. Quadratic unconstrained binary optimisation112

In this approach, the pairs of triplet candidates that can be combined to form tracks are identified
by solving a QUBO problem. The QUBO is expressed via the objective function

O =

N∑
i

∑
j<i

bijTiTj +

N∑
i=1

aiTi, (2)

where Ti and Tj are triplets of hits , Ti, Tj ∈ {0, 1}, and ai and bij are
::::
real

:
coefficients. The113

:::::::
triplets

::
Ti::::

and
:::
Tj::::

can
:::::::
assume

:::::::
binary

:::::::
values.

:::::
The

::::::::
solution

::
of

::::
the

:::::::
QUBO

:::::::::::
determines

::::::::
whether

:::::
each114

::::::
triplet

::
is

:::::::::::
considered

:::::
false

::::
and

:::::::::
rejected,

:::
by

::::::
being

::::
set

:::
to

:::::
zero,

:::
or

::::
true

:::::
and

::::::::
selected,

::::
by

::::::
being

:::
set115

::
to

:::::
one.

::::
The

:
linear term of the QUBO weighs the individual triplets by their quality quantified116

by the coefficient ai. The ai are :::::::::
coefficient

::
is

:
set to the value of δθ scaled to populate the [−1; 1]117

range. The quadratic term represents the interactions between triplet pairs, where the coefficient118

bij characterises their compatibility. The coefficient bij is computed from the doublets forming119

the two considered triplets. It is taken to be the norm of the sum of the standard deviations120

of the doublet angles in the xy and yz planes, translated and scaled to populate the [−1;−0.9]121

range. If the two triplets are in conflict, it
:::
the

::::::::::
coefficient

:::
bij:is set to one. If the triplets are not122

connected, it is set to zero.123

The QUBO in Eq. (2) can be mapped to an Ising Hamiltonian
:::
by

:::::::::
mapping

::::::::::::::::
Ti → (1 + Zi)/2,124

::::::
where

:::
Zi ::

is
::::
the

:::::
third

::::::
Pauli

:::::::
matrix. Minimising the QUBO is equivalent to finding the ground125

state of the Hamiltonian. The Variational Quantum Eigensolver (VQE) [18] method, a hybrid126

quantum-classical algorithm, was used to find the ground state. In this work, the data is127

processed using the VQE implementation available in the Qiskit [19] library. No
:::::
Most

:::::::
results128

::::
rely

:::
on

:::::::::
classical

::::::::::::
simulations

::
of

::::::::::
quantum

:::::::::
circuits,

::::::
where

::::
no

:
sources of noise or decoherence129

are includedin the quantum circuit simulations used in this study
:
,
:
and a simple entangled130

TwoLocalansatz with RY gates and a linear CNOT entangler is chosen, as shown in Figure 6.131

An ansatz with CNOTs between all possible pairs and a single circuit repetition was found to132

lead to results compatible within statistical uncertainties, but was discarded for simplicity. The133

selected optimiser is the Nakanishi-Fujii-Todo (NFT) [20] algorithm. The ansatz and optimiser134

were selected as those leading to the highest track reconstruction efficiency in previous work [14].135

The number of qubits required to represent the tracking problem as a QUBO is determined by136

the number of triplet candidates. Due to the limited number of qubits available on the current137



|0⟩ RY (θ1) • RY (θ5)

|0⟩ RY (θ2) • RY (θ6)

|0⟩ RY (θ3) • RY (θ7)

|0⟩ RY (θ4) RY (θ8)

Figure 6. Layout of the variational quantum circuit using the TwoLocal ansatz with RY gates
and a linear CNOT entangling pattern. For simplicity, only four qubits are shown.

quantum devices, the QUBO in this work is partitioned into QUBOs of smaller size (referred138

to as sub-QUBOs) to be solved iteratively. For small enough sub-QUBO sizes, such as the size139

7 used in this work, an exact solution using matrix diagonalisation is possible and is used as a140

benchmark.141

Figure 7 summarises the workflow, including the QUBO solving process. An initial binary142

vector is defined by assigning the value 1 to all the triplet candidates. The vector is sorted in143

order of impact, which is assessed by the change in the value of the objective function when a bit144

flip is performed. The splitting into sub-QUBOs is done by partitioning the sorted vector into145

sub-QUBOs of the desired size. Each triplet is assigned an additional constant term representing146

the sum of all interactions with triplets outside of the sub-QUBO to retain sensitivity to the147

connections outside of each sub-QUBO when computing the value of the objective function.148

After the sub-QUBOs are solved, the solution is combined. These steps are repeated for a149

number of iterations. The triplets selected by the QUBO minimisation are retained and matched150

to form track candidates.151

Figure 7. Sketch of the full QUBO solving procedure.

Alternative algorithms for finding the optimal QUBO solution, such as QAOA (
:::
the

:
Quantum152



Approximate Optimization Algorithm
:::::::
(QAOA) [21], were briefly investigated and

::::
were

:
found to153

lead to significantly worse performance. A dedicated optimisation and characterisation of the154

results of such algorithm
:::::::::::
alternative

::::::::::
algorithms

:
is left to future work.155

4.2. Quantum graph neural network156

This approach is based on a graph neural network (NN
:::::
GNN) [22, 23] that consists of both157

classical NN
::::::
neural

:::::::::
network

:
layers and quantum circuits. The graph is constructed from158

doublets, where the hits are nodes and the connections between
:::
the

:
hits are edges. All nodes159

of consecutive layers are connected and only the ones that satisfy the pre-selection criteria are160

kept. The quantum graph neural network (QGNN) model follows the implementation of Ref. [11]161

and consists of three networks. The
::::::
First,

:::
the

:
InputNet takes the input node features, i.e. the162

three spatial coordinates, and produces hidden node features. For this purpose, a single fully163

connected NN
::::::
neural

::::::::
network

:
layer that has 10 neurons with a tanh activation function is used.164

The
:::::::
Second,

::::
the

:
EdgeNet takes all connected node pairs as input and produces a scalar edge165

feature for each of them
:::::
using

::
a
::::::::
sigmoid

:::::::::
activation

:::::::::
function. This will later be the prediction166

score of the model for each doublet, as this model is essentially a segment classifier. Circuit 10167

with two layers and 10 qubits is selected for this task based on previous work [11]. The
::::::
Third,168

:::
the

:
NodeNet considers each node and nodes that are connected to it to

::
its

:::::::::::
connecting

::::::
nodes

:::
to169

update the hidden node features. The architecture of the NodeNet is similar to EdgeNet, but it170

uses the tanh activation function for the last layer,
:
as the NodeNet is an intermediate step

:
,
:
and171

sigmoid activation functions are known to lead to vanishing gradients.172

The quantum graph neural network (QGNN) model first starts with the InputNet. Then, the173

EdgeNet and
:::
the

:
NodeNet are applied

::::::::::
alternately

:
four times to allow the node features to be174

updated using farther nodes, as determined in a scan of the optimal model parameters. At the175

end, the EdgeNet is applied one last time to obtain the predictions for each doublet connection.176

Finally, the edges are discarded if the prediction value is less than 0.5 and the rest are retained177

and used to form track candidates.178

4.3. Combinatorial Kalman filter179

A tracking algorithm based on A Common Tracking Software (ACTS) toolkit [24] with the180

combinatorial Kalman Filter (CKF) technique for track finding and fitting is used as a181

benchmark. In this classical tracking method, track finding starts from seeds, which are the182

triplets formed from the first three detector layers. An initial estimate of track parameters is183

obtained from the seed and is used to predict the next hit and is updated progressively, with184

the measurement search performed at the same time as the fit.185

4.4. Final track selection186

::
A

::::
final

:::::
step

:::
in

:::
the

::::::
track

::::::::::::::
reconstruction

::
is
:::::::::
common

:::
to

:::
all

::::::::::
considered

::::::::::
methods.

:
Track candidates187

are required to have four hits , either found directly with the
::::
and,

:::
as

:::::::::::
explained

:::
in

::::
the188

::::::::
previous

::::::::::::
subsections,

::::
can

:::
be

::::::
found

::::::
either

:::::
with

::::
the

:::::::
QUBO

::::::::::
approach

:::::
that

:::::::::
combines

::::::::
triplets

::::
into189

:::::::::::
quadruplets

:::::
(see

::::::::
Section

::::
4.1)

:::
or

:::
by

::::::
using

::::
the

:
classical CKF method or by combining selected190

doublets or triplets into quadruplets
::::
(see

:::::::
Section

::::
4.3)

:::
or

:::
by

::::::::::
employing

::::
the

:::::::
QGNN

:::::::::
approach

:::::
that191

:::::::::
combines

::::::::
doublets

:::::
into

::::::::::::
quadruplets

::::
(see

:::::::
Section

:::::
4.2). The track candidates are fitted to straight192

lines with the least-square method
:
,
::
as

::::
the

:::::::::
particles

::::::::::
propagate

:::::::::
through

:::
the

:::::::::
tracking

::::::::
detector

:::
in193

:::::::
absence

:::
of

::
a

:::::::::
magnetic

:::::
field. A track candidate is considered matched if it has at least three out194

of four hits matched to the same particle. Figure 8
:::::
(left)

:
shows the duplication rate, i.e. the195

fraction of matched particles that are matched to more than one track candidate, as a function196

of ξ.
::::
The

:::::::::::::
substantially

::::::
larger

:::::::::::
duplication

::::
rate

:::
of

:::
the

::::::
CKF

::::::::::
technique

::
is

::::
due

::
to

::::
this

::::::::
method

::::::
being197

:
a
::::::
local

:::::::::
approach

:::::
with

::::
no

:::::::::::
knowledge

::
of

::::
the

::::::::
overall

::::
BX,

:::::::
unlike

::::
the

::::::::
QUBO

::::
and

::::::::::::::
QGNN-based198

:::::::::::
approaches.

:
199
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Figure 8. Left: duplication rate as a function of ξ.
::::
The

::::::::
results

:::::
from

::::
the

:::::::
exact

:::::::
matrix

::::::::::::::
diagonalisation

::::
are

:::::::
shown

:::
as

::
a

::::
line

:::
to

::::
help

::::
the

::::::::::::
comparison

:::::::::
between

:::
the

::::::::::
methods.

:::::
The

:::::::
results

:::::
based

:::
on

:::::::
hybrid

:::::::::::::::::
quantum-classical

:::::::::
methods

::::
rely

:::
on

::::::::
classical

:::::::::::
simulations

:::
of

:::::::::
quantum

:::::::
devices.

:::::
The

::::::::
decrease

::
in

::::::::::::
duplication

::::
rate

:::
for

::::::
CKF

:::
for

::::::
ξ > 5

::
is

::::::::::
correlated

:::::
with

::::
the

:::::::
overall

::::::::
decrease

:::
in

::::::::
tracking

:::::::::
efficiency

::
in

:::::
this

:::::::::
scenario.

:
Right: χ2 distribution of the fitted track candidates found using the

QUBO approach
::::
with

::::::
exact

:::::::
matrix

::::::::::::::::
diagonalisation, shown separately for matched

::::::
(blue)

:
and

fake
:::::
(red)

:::::
track

:
candidateswhere

:
.
:::::
The

::::::::
dashed

:::::
lines

:::::::::
represent

:
the fake

:::::
track

:
candidates are

scaled by a factor
::::
from

::::
the

::::::::
QUBO

:::::::::
solution,

::::::
while

:::
the

::::::
solid

:::::
lines

:::::::::
represent

::::
the

::::::::
selected

:::::::
tracks

::::
after

::::
the

::::::::::
resolution

:
of 10 for ease of comparison

:::::::::::::
reconstruction

::::::::::::
ambiguities.

To resolve the overlaps between the track candidates and to reject fake tracks, an ambiguity200

resolution step is performed. The track candidates are scored based on the χ2 of the track fit201

, shown in Figure 8, and the number of shared hits with other track candidates. The track202

candidates with the most shared hits are evaluated first. They are compared to the other track203

candidates sharing the same hits
:
,
:
and the ones with worse χ2 of the track fit are rejected. The204

procedure is repeated until all remaining tracks have up to one shared hit.
::::::
Figure

::
8

:::::::
(right)205

::::::
shows

::::
the

::::::
effect

::
of

::::
the

:::::::::::
ambiguity

::::::::::
resolution

:::
on

:::::::::
matched

:::::
and

::::
fake

:::::::
tracks

::::
for

::
a

:::::::
QUBO

:::::::
solved206

:::::
using

:::::::
matrix

:::::::::::::::
diagonalisation

:::
in

::
a

::::
BX

:::::
with

::::::
ξ = 7.

:::::
This

:::::::::
scenario

::::
was

::::::::
selected

:::
to

:::::
show

::::
the

::::::
effect207

:::
for

:::
the

::::::::
highest

::::::::
particle

::::::::::::
multiplicity

::::::::::
considered

:::
in

::::
this

::::::
work.

:
208

5. Results209

5.1.
::::::
Studies

:::::
with

:::::::::
classical

:::::::::
hardware210

The performance of various tracking methods is assessed using the efficiency and the fake rate as
metrics, which are computed on the final set of tracks. The efficiency and fake rate are defined
as

Efficiency =
Nmatched

tracks

Ngenerated
tracks

and Fake rate =
N fake

tracks

N reconstructed
tracks

. (3)

Figure 9 shows the average track reconstruction efficiency
:::::
(left)

:
and fake rate

::::::
(right)

:
as a211

function of the laser field intensity parameter ξ for all tested approaches: QUBO
:::::::::::::
QUBO-based212

::::::::
tracking

:
(both with

:::
the

:::::::::::::
approximate

::::::::
solution

::::::::::
obtained

:::::
with

:
VQE and the exact solution via213

matrix diagonalisation), QGNN-based tracking
:
, and conventional CKF-based tracking.214

The performance of CKF-based tracking is used as a realistic
::::::::::::::
state-of-the-art

:
benchmark.215

The excellent performance of the classical method deteriorates with ξ, because of the increasing216

hit density. The results using the exact matrix diagonalisation to solve the QUBO are well217
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Figure 9. Left: track
:::::
Track

::
reconstruction efficiency as a function of the field intensity

parameter
:
ξ. Right: track

:::::
Track

:
fake rate as a function of ξ.

::::
The

:::::::
results

::::::
from

::::
the

::::::
exact

::::::
matrix

::::::::::::::::
diagonalisation

:::
are

:::::::
shown

:::
as

::
a

::::
line

:::
to

:::::
help

:::
the

::::::::::::
comparison

:::::::::
between

::::
the

:::::::::
methods.

:::::
The

::::::
empty

:::::::::
triangles

:::::
show

::::
the

:::::::
results

::
of

::
a
::::::::
QGNN

::::::::
training

:::::::
limited

:::
to

::::
100

:::::
BXs.

:::::
The

:::::::
results

::::::
based

:::
on

::::::
hybrid

::::::::::::::::::
quantum-classical

:::::::::
methods

::::
rely

:::
on

::::::::
classical

::::::::::::
simulations

:::
of

:::::::::
quantum

::::::::
devices.

aligned with the CKF algorithm and achieve a higher efficiency by 1–2% for large values of218

ξ at the cost of an increase in the fake rate of approximately
::
a

:
factor of two. The rate of219

purely combinatorial tracks, i.e. tracks reconstructed from four hits belonging to four distinct220

truth particles
:::::::::
positrons, accounts for about 50% of the total fake rate, independently of the221

reconstruction algorithm considered. The results for VQE are in excellent agreement, within222

the statistical uncertainties, with those from the matrix diagonalisation.223

The results for the QGNN-based tracking are shown up to ξ = 4, above which simulating the224

quantum circuits becomes computationally prohibitive
::::
with

::::
the

::::::::::
currently

:::::::::
available

:::::::::
resources.225

The reconstruction efficiency is found to be compatible with the other methods, with a226

substantially higher fake rate. Further work aimed at optimising the selection on
::
of the EdgeNet227

predictions could mitigate this effect. The QGNN results were validated by implementing a228

classical GNN [22, 23] with the same architecture, but
::::
with

:
128 node hidden features, finding229

excellent agreement.
:::
For

::::::
ξ = 3,

::::
two

:::::::
values

::
of

::::::::
QGNN

:::::::::
efficiency

::::
are

:::::::
shown.

:::::
The

:::::::
empty

::::::::
triangle230

:
is
::::
the

::::::
result

:::
of

::
a

::::::::
training

::::::
based

:::
on

:::::
100

:::::
BXs,

::::
i.e.

::::
the

:::::
same

::::::::
number

:::
of

::::
BX

:::::
used

:::
to

::::::::
evaluate

::::
the231

::::::::::::
performance

::
of

::::
the

::::::
CKF

::::
and

:::::::::::::
QUBO-based

::::::::::
methods,

::::::
using

:::::
90%

::
of

::::
the

:::::
data

:::
for

::::
the

:::::::::
training

::
of232

:::
the

:::::::
model

::::
and

:::::
10%

:::
for

::::
the

::::::::::
inference.

:::::::::
Because

:::
of

:::
the

::::::::
modest

::::::::
particle

::::::::::::
multiplicity

:::::::::
expected

:::
at233

::::::
ξ = 3,

::::
the

::::::::
number

::
of

:::::
true

::::::
tracks

:::::
used

:::
in

::::
the

:::::::
QGNN

::::::::
training

:::
is

::::
too

:::::
small

:::
to

:::::::
obtain

:::
an

::::::::
optimal234

::::::
result.

:::::
The

::::
full

:::::::::
triangles

::::::
shows

::::
the

:::::::::
efficiency

:::::::::
obtained

:::::
with

::::
the

::::::::
QGNN

::::::::
training

::::::
based

:::
on

:::::
data235

:::::::::
generated

:::::
with

:::::::
ξ = 4,

::::::
which

::::::::::::
corresponds

:::
to

:
a
:::::::::::::
substantially

:::::::
larger

:::
set

::
of

:::::
true

:::::::
tracks,

:::::::::
restoring

::
a236

::::::
higher

::::::::::
efficiency.

:
237

Figure238

::::
The

::::::::::::
dependency

:::
of

::::
the

:::::
track

:::::::::::::::
reconstruction

::::::::::
efficiency

:::
on

::::
the

::::::::::::
GNN-based

::::::::::::
approaches

::::
was239

:::::::
further

:::::::
studied

:::
in

::::::::
e−-laser

:::::::::
collisions

:::::
with

::::::
ξ = 3,

:::::::::::
comparing

:::
the

:::::::
results

:::::::::
obtained

:::::
with

::::
the

:::::::
QGNN240

::::
and

::::
with

::
a
:::::::::
classical

:::::
GNN

::::
for

::::::::
different

:::::::::
numbers

::
of

:::::
true

::::::
tracks

:::::
used

:::
in

:::
the

:::::::::
training.

:::::
The

::::::::
findings241

:::
are

::::::::::
presented

::
in

:::::::
Figure

:::
10.

:::::
The

:::::::::
efficiency

:::::::
results

:::
for

::::
the

:::::::
largest

::::::
track

:::::::::::
multiplicity

:::
of

:::::
both

::::::
GNNs242

:::
are

:::::::::
obtained

::::::::::::
performing

::::
the

::::::::
training

:::
on

:::::::
events

::::::
with

::
a

::::::
larger

::::::
value

:::
of

::::::
ξ = 5

:::
for

::::
the

:::::::::
classical243

:::::
GNN

::::
and

::::::
ξ = 4

::::
for

::::
the

::::::::
QGNN.

::::
All

::::::
other

:::::
data

::::::
points

::::
are

:::::::::
obtained

::::
by

::::::::::
increasing

::::
the

::::::::
number244

::
of

:::::
BXs

::::::::::
considered

:::
at

:::::::
ξ = 3.

::::::
While

:::
it

::
is

::::
not

:::::::::
expected

::::
for

:::
the

::::::::
QGNN

::::
and

::::
the

:::::::::
classical

:::::
GNN

:::
to245

::::::::
perfectly

::::::::
overlap

::
in

:::::::::::::
performance

::::::::
because

::
of

::::
the

:::::::
slightly

:::::::::
different

::::::
model

::::::::::::::
architectures,

:::
the

:::::::
results246

:::::
show

:::::::::::
compatible

::::::
trends

::::::
when

:::::::::::
considering

:::::::::::
additional

::::
data

::::
for

:
a
:::::
fixed

::::::
value

::
of

::
ξ
::::
and

::::::
using

:::::::
models247
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Figure 10.
::::::
Track

::::::::::::::
reconstruction

::::::::::
efficiency

:::
as

::
a

:::::::::
function

::
of

::::
the

:::::::::
number

::
of

:::::
true

:::::::
tracks

:::::
used

::
in

::::
the

::::::::
training

:::
of

:
a
:::::::::
classical

::::::
GNN

::::
(red

:::::::::
squares)

:::::
and

:::
the

::::::::
QGNN

:::::::
(brown

::::::::::
triangles)

::::
for

::::::::
e−-laser

:::::::::
collisions

:::::
with

::::::
ξ = 3.

:::::::
trained

:::
on

:::::
BXs

:::::
with

::::::
larger

::
ξ.

:
248

::::::
Figure

:
11 shows the track reconstruction efficiency

:::::
(left)

:
and fake rate

::::::
(right)

:
as a function249

of the true positron energy for the case of ξ = 5. The ,
::::
for

:::
the

:
CKF and QUBO-based tracking250

:::::::::
methods.

:::::
The

:::::::::
methods

:
show similar behaviours, with a decrease in the region corresponding251

the highest detector occupancy. Because of effects coming from the propagation through the252

magnetic field and from the longitudinal size of the interaction region, the maximum occupancy253

shown in Figure 3, does not correspond to the maximum of the positron energy distribution.254

::::
The

::::::::
reduced

:::::::::
efficiency

:::
of

::::
the

:::::::::::::
QUBO-based

:::::::::
methods

:::
for

::::::::::
positrons

:::::
with

:::
an

:::::::
energy

::::::
below

::
3
:::::
GeV255

:
is
:::::::::::
dominated

:::
by

::::
the

:::::::::::::
pre-selection

:::::::::
efficiency

:::::::
shown

::
in

:::::::
Figure

::
5
::::::
(left).

:
256

The average energy resolution of the reconstructed tracks was also compared between the257

different methods. The track energy resolution was found to be 0.5% and independent of the258

reconstruction method within the statistical uncertainty of the analysed data set.259
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Figure 11. Left: track
:::::
Track

:
reconstruction efficiency as a function of the positron true energy

for ξ = 5. Right: track
::::::
Track fake rate as a function of the positron true

:::::::::
measured

:::::
track

:
energy

for ξ = 5.
::::
The

:::::::
results

::::::
based

:::
on

:::::::
hybrid

::::::::::::::::::
quantum-classical

:::::::::
methods

::::
rely

:::
on

:::::::::
classical

:::::::::::
simulations

::
of

:::::::::
quantum

::::::::
devices.



5.2. Studies with quantum hardware260

The
:
A

:::::::::
detailed

:::::::::::
assessment

::
of

::::
the

:
performance of the VQE algorithm on QUBOs of size seven,261

chosen to be the same as the sub-QUBO size used for the results based on quantum circuit262

simulation, was also evaluated with real quantum hardware (ibm nairobi). The performance263

was evaluated on a
:::::::::
classically

::::::::::
simulated

::::::
VQE

::
in

::::::::
Section

::
5,

:::::
was

:::::::::::
performed.

:
264

:
A
::
QUBO representing two nearby particles

:
,
:
leading to a total of seven triplets. Three265

different back-ends for the VQE are compared, each with 512 circuit evaluations (shots): an266

ideal simulation without noise , Fake Nairobi which is a simulated device with noise modelled267

after ,
:::::
was

::::::::
selected

::::
for

:::::
this

:::::
test.

:::::
The

::::::
VQE

:::::::::
method

::::
was

::::::::
applied

:::::
first

:::
in

:::
an

::::::
exact

:::::::::
classical268

::::::::::
simulation

:::::::::
assuming

:::
an

:::::
ideal

::::::::::
quantum

::::::
device

:::::
with

:::::
shot

:::::
noise

:::::
only,

:::::
then

::
in

::
a
::::::::
classical

:::::::::::
simulation269

:::::::::
involving

::
a

:::::
noise

:::::::
model

::::::::::
extracted

:::::
from

:
a snapshot of the measured noise of the ibm nairobi270

device and finally the
:::::::::::::
(fake nairobi)

:::::
and

::::::
finally

::::::
using

::::
real

:::::::::
quantum

::::::::::
hardware

::::::::::::::
(ibm nairobi).

:
271

:::
For

:::::
each

::
of

::::::
these

:::::::::
scenarios,

::::
512

:::::::
circuit

:::::::::::
evaluations

:::::::
(shots)

:::::
were

:::::::::::
considered.

:::::::
When

:::::::::::
performing272

:::
the

::::::::::::::
computations

:::::
with

::::::::::::
fake nairobi

::::
and

:
ibm nairobidevice itself. Readout

:
,
:::
an

:::::
error

:::::::::::
mitigation273

:::::
based

:::
on

::::
the

::::::::::
generation

:::
of

:
a
:::::::::::
calibration

:::::::
matrix

::::
was

:::::
used

:::::::
[25, 26]

:
.
:::::
The

:::::::
readout

:
error probabilities274

were recalibrated
::::::::::
calibrated every 30 function evaluations of the optimiser.275

Figure 12 shows the probabilities of the returned results for these three scenarios, where the276

correct binary solution 0001111 is also the most probable.277
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Figure 12. Distribution of the returned
:::::
VQE

:
results on

:::
for

:
a test QUBO composed of seven

triplets. The blue bars indicate the results obtained from 512 shots on the ibm nairobi quantum
computer, compared with a realistic and an ideal

::::::::
classical

:
simulation of the same system.

::::
The

::::::
results

::::::
from

::::
the

::::::::
realistic

:::::::::
classical

:::::::::::
simulation

:::::
and

::::::
from

::::::::::::
ibm nairobi

::::
use

:::
an

::::::
error

:::::::::::
mitigation

:::::::::
technique

::::::
based

:::
on

::::
the

:::::::::::
generation

::
of

::
a
:::::::::::
calibration

::::::::
matrix.

6. Conclusion278

This work investigated the use of hybrid quantum-classical algorithms, based respectively on279

a QUBO formulation or a quantum graph neural network, in
:::
on

::
a
::::::
VQE

::::::::::
approach

::::
for

::
a280

:::::::
QUBO

:::::::::::
formulation

::::
and

::
a
:::::::
QGNN

::::::::::
approach,

::::
for

:::::::
particle

:
track reconstruction and compared their281

performance with the results obtained with
:::::
from a state-of-the-art classical tracking method.282

In order to produce these results, a standalone fast simulation of the LUXE tracking detector283

was put in place as well as a software framework able to reconstruct tracks up to the maximum284

number of positrons expected during the data taking with a laser power of 40 TW.285



The results were analysed in terms of reconstruction efficiency, fake rate and energy resolution.286

Hybrid quantum-classical algorithms performed with gate-based quantum computers were found287

to lead to competitive results when compared to classical algorithms. For large particle288

multiplicities, a QUBO approach
:::::
based

:::
on

:::::
VQE

::::::
using

::
a

::::::::
classical

::::::::::
simulation

:::
of

:
a
::::::::::
quantum

::::::
device289

was found to have moderately higher efficiency than classical tracking, but
::::
with

:
a significant290

increase in the fake rate. It was not possible, due to limitations in the computing resources,291

to evaluate the performance of the approach based on quantum graph neural networks
::::::::
QGNNs292

beyond a few thousand charged particles.293

7. Outlook294

It
::
In

:::::
this

::::::
work,

::
it
:
was observed that the impact-based sorting of the binary vector leads to a295

significant fraction of trivially-solvable sub-QUBOs with no interacting triplets. Future work
:::
will296

::
be

:
aimed at developing alternative algorithms for the sorting of the binary vector representing297

the triplet candidates and
:::
for the splitting of the problem into sub-QUBOs, as well as optimising298

the scaling ranges for the ai and bij coefficients, will be aimed at reducing the
:
.
:::
To

:::::::
further

:::::::
reduce299

:::
the

:
computation time and the rate of fake tracks reconstructed with this method

:
,
:::::::
future

:::::
work300

:::
will

::::::
focus

:::
on

:::::::::::
optimising

::::
the

:::::::
scaling

:::::::
ranges

:::
for

::::
the

::
ai:::::

and
:::
bij :::::::::::

coefficients.301

While the initial study of the
:::::
VQE

:
performance on real devices without error correction302

was performed on real quantum hardware (ibm nairobi) found
::::::
yielded

:
promising results, a303

more systematic study of hybrid quantum-classical algorithms using NISQ-era devices will be304

performed in future work.305

The
:::::::
Finally,

::::
the

:
choice of the optimiser used for VQE has a significant impact on the306

probability to find the real
::::
true minimum of the cost function, and a careful optimisation will307

be required when considering large
::::::
larger sub-QUBO sizes.308
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