QC Meeting - Summer Student Projects

David Spataro Hamburg, 12.07.2023

Project outlines

1. **QC track reconstruction on realistic detector simulation:**

Positron track reconstruction with quantum computing on fully digitised events. (Supervisors: Federico + Yee + David)

2. Integration of QC track reconstruction into key4hep:

Implementing track fitting using the ACTS Kalman Filter on track candidates obtained from the QC approach.

(Supervisors: Thomas + Yee + David)

HELMHOLTZ

1) QC on realistic simulation

So far:

Studies performed on a custom fast simulation, with a simplified geometry model and no background.

Project Motivation:

Studying the QC pattern recognition approach in a more realistic simulation environment.

HELMHOLTZ

1) QC on realistic simulation

custom simulation

HELMHOLTZ

realistic simulation (physics processes, detector material, cluster sharing after digitisation, ...)

e⁺

background

(n, e⁻...)

1) QC on realistic simulation

- Comparison between Geant4 and custom fast simulation output
 - \rightarrow update preselection and QUBO model parameters
- Test QC approach on digitised events w/o and w background
- Run a subset of a BX on an real quantum device from IBM

QUBO =
Q Uadratic
U nconstrained
B inary
O ptimisation

For the first time, pattern recognition of positron tracks from a realistically simulated LUXE event with detailed geometry will run on a quantum computer!

2) QC track reconstruction inside key4hep

So far:

Track selection (fitting, resolve ambiguities) with a stand-alone python script.

Project Motivation:

Proper comparison between results of different track reconstruction methods in a seamless and consistent way.

2) QC track reconstruction inside key4hep

2) QC track reconstruction inside key4hep

- Event simulation and reconstruction inside key4hep using ddsim already available for the classical method, QC pattern recognition stand-alone outside key4hep
- Integration of QC pattern recognition in key4hep, in particular the implementation of the Kalman filter for track fitting in ACTS.

The integration of track fitting with a Kalman filter into the key4hep environment will allow a proper comparison of the results of different approaches to track reconstruction!

HELMHOLTZ

Preparation

- QC pattern recognition framework \rightarrow adjust pattern building \bigvee
- Change input/output formats for the QC pattern recognition step (?)
- key4hep python environment ↔ QC pattern recognition compatibility
- IBM Quantum Computer backends compatibility (qiskit, python)
- Run tests on which IBM device(s)?

