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QuAnNt: Learned coulings for QUBO problems
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learn QUBO forms from data for any problem type using the backpropagation

Qubits

The paper introduces a contrastive loss that circumvents the non-differentiable nature of quantum

annealing/simulated annealing

Competitive performance to derived QUBO, resistance to noise


https://arxiv.org/pdf/2210.08114.pdf

Multi-layered perceptron

- Fully connected neural network (every
node is connected w every neuron in th
next layer)

- Very simple “starting” NN

- Loss gradient is calculated one layer at
a time, moving from the output to input
layer —loss function has to be o Hidden
differentiable Layer Layer

- However (!) this has fixed input and
outputs
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Loss function

General loss differentiable w respect to A:

Ground truth solution
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If the energy of the ground truth solution is higher than the found solution, weights are adjusted

Loss function can be adjusted to favor sparse matrices, ....



Loss function: future additions

- Favors triplets that have at least 3-same particle hits
- Favors 4-same particle hits over 3-same particle hits (?)
- Avoids conflicts

- Avoids degeneration of QUBO solutions (same energy should not lead to
multiple solutions)
- Encourages sparsity (minimises number of entries)
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