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LUNAE: LASER UND XFEL EXPERIMENT

e Experiment in planning at DESY and European XFEL to study collisions of

high-energy XFEL electron beam and high-power laser.
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e 2 running modes: electron-laser and photon-laser.

e Planned in 2 phases (40 vs 350 TW laser).

e Other LUX

- talks @

+ TOR: anxiv2308.00515 NN

-PS:

e (General physics (Fri 09:42) by Evan R

e Detector challenges (Fri 09:00) by Sasha B

LUNAE: LASER UND XFEL EXPERIMENT

Focus on phase-0 (40 TW
laser) e-laser in this talk

e High-rate electron detectors (Thu 09:10) by Antonios A

e BSM programme (Thu 09:00) by Nicolo
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MEASUREMENT

e |LUXE aims to make precision measurements in a

transition from perturbative to non-perturbative

QED.

e One such measurement is positron rate vs g,
which spans over 10 orders of magnitudes.

* [or precise positron rate measurement, reconstruct

particle path with tracking.

e Acts as a magnetic spectrometer where lower

energy positrons are deflected more.

e Detector: 4 layers of 50 x 1.5 cm Silicon pixel tracker

using ALP]
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LUXE TRACKING CHALLENGE

e Tracking at LUXE becomes challenging due to combinatorics at high track multiplicities.

e At phase-0 (40 TW laser), occupancies at the

y [mm]

pixel detector reach 100 particles/mm? °r
4_
* Orders of magnitudes higher than other )

polanned HEP experiments, e.g. HL-LHC.
0

 Even higher occupancies can be expected in phase-1.-2
_4

e Quantum computing may offer an advantage. In 6
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our paper (arXiv:2304.01690), we study various

tracking methods using quantum and classical algorithms.
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OVERVIEW OF THE WORKFLOW
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PTARMIGAN arXiv:2108.10883

Custom fast tracker simulation
with simplitied detector setup


https://arxiv.org/pdf/2108.10883.pdf
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OVERVIEW OF THE WORKFLOW

Quantum/classical pattern
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OVERVIEW OF THE WORKFLOW
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QUANTUM GRAPH NEURAL NETWORK (GNN)

e Doublet classification. Asegfne”t

e Graph constructed from doublets, where the hits are

nodes and the connections between the hits are edges. An adge

A node
* Hybrid quantum-classical model with

10 hidden features (qubits).

XX, XX
: : : AR Quantum Quantum Quantum Do

* N iterations of alternatingedge and ¢ ¢ o — dge Node tdoe b a
o060 Network Network Network o060

node networks applied.

e Edge/doublet with scores above threshold are retained to form track candidates.

HEP.TrkX: arXiv:1810.06111, Exa.TrkX: arXiv:2103.06995, Q.TrkX: arXiv:2109.12636
Yee Chinn Yap /
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uadratic
QUBO nconstrained
inary
e
e Triplet classitication. S
e Find the best set of triplets which can form tracks by minimising the QUBO,
given by the states of T;, T

O(a,b,T) = T. b, 1;T;, T,T: € {0,1
e The QUBO can be 4 ) Za +ZZ / 101

: J<I
mapped to an Ising o |
. . Weighting triplet T, between two triplets
Hamiltonian. with quality a
-S(11,17), 1t (T;, 7)) form a quadruplet,
S . b;=4¢ if (7}, T;) are in conflict,
* I\/I|n|mlsmg the QUBO is 0 otherwise.

equivalent to finding the

ground state of the Hamiltonian.
Find T;, Tj that minimises QUBO!

Yee Chinn Yap 8



QUBO

 The ground state is found using Variational Quantum Eigensolver (VQE), a hybrid guantum-

classical algorithm.

e Nakanishi-Fujii-Todo (NFT) optimiser used.

e QUBO is partitioned into sub-QUBOs of the
size of the quantum device (7 qubits assumed)

to be solved iteratively.

e Exact solution using matrix diagonalisation used as benchmark.

e Another method of finding the ground state is with quantum annealing, see poster by

Ry (05)
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Annabel K titled "Assessing the potential of quantum annealers for track reconstruction at

LUXE".
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For extension of this method to 4D

tracking, see David S's talk afterwards
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COMBINATORIAL KALMAN FILTER (CKF)

/.«-ﬁ

e CKF in a common tracking software (ACTS) used. a\tS
N
e Triplets from first three layers are used as seeds.

* Track parameters estimated from seeds used to
steer the tracking.

Yee Chinn Yap
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FINAL TRACK SELECTION

* Tracks are required to have 4 hits.

 Found either directly with classical CKF tracking or by
combining selected doublets/triplets into quadruplets
in the GNN/QUBO approaches.

e Tracks are fitted and ambiguity solving applied to remove

worse quality tracks with shared hits from the track collection.

e No track is allowed to have more than 1 shared hit.

Yee Chinn Yap

Retained track
candidates

Track candidate to be
removed during
ambiguity solving
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PERFORMANCE

e Compare performance of these tracking methods for £ = 3—-7 in LUXE
ohase-0 e-laser interactions, where the number of positrons are between 140

and 67/ ,OOO Average number of positrons
138 2072 10580 31289 67313
[ E | ' | ' | ' | ' —
o = _ i}
e WO metrics: g- 10° 40 TW laser, e -laser .
]Vmatched>X< g - ™ Doublet 1 -
Efﬁciency = ZZfltiated g 10° = A Triplet - -
= N -
‘Ntracks = ol _
Nfakef( 5 10°F " =
tracks o - .
Fake rate = 0 - -
Nreconstructed 'CE) 3L _
tracks 5 10°E =
P - ] -
~ A 3
l | | | |
3 4 5 6 7

*A track is considered matched if the majority of its hits belong to the same particle (i.e. at least 3 out of 4 hits).
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RESULTS
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PERFORMANCE VS ENERGY
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TEST ON REAL QUANTUM HARDWARE

e Results shown so far obtained using classical simulations of quantum hardware
without noise.

n I I I I I I I I I
Q 1 —
e To study how well VOE works, we study 3 7 qubit systems 3
. h , ‘ h _g 0.8 B (deal Simulation _
an example with / triplets (matching e fake nairobi :
the #qubits of the device tested). 0.6 [ ibm_nairob -
0 4 Nshotszs‘|2 _:
o Compare reSUItS 'I:rOm running on ' Measurement error mitigation applied -
: : 0.2 -
quantum hardware (IBM Nairobi) :

to ideal simulation as well as a e g = g g o

o

Correct solution
Yee Chinn Yap



SUMMARY AND OUTLOOK

o | UXE will study strong-field QED in an unprecedented regime using high-intensity optical laser
oulse and 16.5 GeV XFEL electron beam.

e Demonstrated the feasibility of tracking using a quantum approach.

e Achieved similar performance as classical tracking.

e Next steps:

e More systematic study of these algorithms
using Noisy Intermediate Scale Quantum

(NISQ)-era devices.

e Study even more extreme environments and
explore regions where quantum computing
could outperform traditional methods.

Yee Chinn Yap
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T € {0,1}
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Final solution

19



TRACK POST PROCESSING
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G NN

e Circuit 10 with two layers and 10 qubits used.
—Ry *—o Ry

5
=
> 2 2 2

—Ry—~eo—-= Ry

(d) Circuit 10 in four qubits and single layer config-
uration. Adapted from Sim et al. (2019).

e EdgeNet and the NodeNet are applied alternately four times to allow the node features
to be updated using farther nodes, as determined in a scan of the optimal model
parameters.
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G NN
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Fig. 6 The Hybrid Neural Network (HNN) architecture. The input is first fed into a classical fully connected Neural Network
(FC NN) layer with sigmoid activation. Then, its output is encoded in the QNN with the Information Encoding Circuit (IEC).
Next, the Parametrized Quantum Circuit (PQC) applies transformations on the encoded states. The output of QNN is obtained
as expectation values for each qubit that is measured. A final FC NN layer with sigmoid activation is used to combine the
results of different qubit measurements. The same HNN architecture is used in Edge (upper input and output dimension) and
Node Networks (lower input and output dimension) with different parameters. The input and output dimension sizes change
according to the network type. Details of the dimensions of each layer are given in Table m
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Qubit Hamiltonian A

Choice of ansatz

—T 00 s 9 - _
Classical Optimizer

Energy Evaluation Repeat until

convergence
to obtain

Parametr!zed. Ra (0. | mine E(H)
quantum circuit :

-_—m
State Expectation

preparation estimation

Image from http://opengemist.1gbit.com/docs/vge_microsoft_gsharp.htm|
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METHOD COMPARISON

Methods
Starting point

Local/global

Extent

Classical

benchmark
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GNN
Doublet

QUBO
Triplet

CKF
Seed

Global

Global

| ocal

Pattern recognition only

Pattern recognition only

Pattern recognition +
track fitting

Classical GNN

Matrix diagonalisation
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