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My Resea]fCh Researchinterests:
 Bigdata
* Representations

* Machine learning

1. Introduction

My work:

« MIGHTEE-POL (deepradio survey with polarisation
measurements)

» Large scale pre-training

« Semantic language
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Il’lt]deUCtiOl’l Goals:

1. Getthe mostout of our data,

2. Enable researchinto high dimensional features of data,
3. Allow usersto interact with data intuitively,

4. Reduce barriersto the field (i.e. reduce labelling costs).

1. Introduction

"A picture is worth a thousand words."

... what about our data?
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Goals:

1. Getthe mostout of our data,

2. Enable researchinto high dimensional features of data,
3. Allow usersto interact with data intuitively,

Reduce barriers to the field (i.e. reduce labelling costs).

"A picture is worth a thousand words."

... what about our data?

Figure 1. Visualisation of the representation learned by our CNN, showing similar galaxies occupying similar regions of feature space. Created using
Incremental PCA and umap to compress the representation to 2D, and then placing galaxy thumbnails at the 2D location of the corresponding galaxy.

Walmsley et al. (2022) https://arxiv.org/abs/2110,12735
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Introduction

1. Introduction

ESA/Hubble NGC 4298
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Introduction

1. Introduction

WHERE'S WALLEYE?

VOYAGES IN TIME

SIREN project

THE LIVES OF LITERARY
CHARACTERS

EINSTEIN@HOME: PULSAR
SEEKERS
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1 WANT YOU

BURST CHASER DEAR MONSIEUR SAMPAIO.. WWII ARMY SEPARATION
NOTICES

NOTES FROM NATURE
CAPTURE THE COLLECTIONS

Trees
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ApplicatiOHS Radio galaxy

morphology
Initial test bed.
Bowles+22,23

Ramatsoku et al. (2020); South African Radio Astronomy Observatory (SARAO)
1. Introduction

JWST galaxy
morphology
Hayley Roberts
(Minnesota)

Pandya et al. (2024) :

NASA, ESA, CSA, STScl, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin),
Rebecca Larson (UT Austin)
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per thousand

Balona 2023
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Pre-Training

Data volumes to build robust representations for adaptable
models:

 ImageNet- 1.4 million samples, 21k labels [1]
 JFT- 4 billion samples, 30k labels [2]

. . Domain specific datasets cost much more to label.
2. Pre-Training

“A picture is worth a thousand words.”

“Car”




Semantic Class
Targets: A Novel
Machine Learning
Solution

3. Semantics

Wit AlanTuring
et Instltute The University of Manchester

Problem in technical classifications:
Car
VS

Fanaroff-Riley Type 1 (FRI)

The solution:

"A New Task: Deriving Semantic Class Targets forthe

Physical Sciences"
Bowles et al. (2022) and Bowles et al. (2023).

10
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OntOlOgleS 1n Ontology (‘study of being'): “A set of concepts and
Computer Science . categories in a subjectarea or domain that shows their
. . properties and the relations between them.” (not the
AppllcathnS and ontology of analytic philosophy)
Challenges Examples:

 CS: Semantic web (Web Ontology Language) [5]

» BioMed: Basic formal ontology [6], etc.

3. Semantics

 Al:WordNet[7] (not quite but pretty close)
(ImageNetis built using WordNet)

Please note: Semantic taxonomies are not ontologies.

11
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Semantic
Classifications for
Pre-Training

DATA LABELING & PREPARATION

Human in the Loop

Enriched Data

INPUT

3. Semantics Artificial Intelligence Model
MACHINE LEARNING, DEEP LEARNING

OUTPUT

Model Predictions RETRAINING & OPTIMIZATION

Supervised Learning: Training Data Process

Predicted Target
OUTCOME

https /Awww cloudfactory com training-data-guide 12
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The First
Approach

EM1 EMU & DSS EANU & WISE 3.1

RGZ EMU [8]
4. Early approach

13




The First
Approach

4. Early approach
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[8] . ‘ . . O O Raw Annotations

Pre-Processing

..Q.QQMWM

Embed using Pre-Trained
Y Language Model

....@@m“

Aggregate with
¥  Similar Entries

...@@@mwm

Extract Nearest Token

. ? O Tags

Train Model to Predict
Science Classes from Tags

Science Predictive .
Classes * Trained Model

7,[,— — Query Tag Importance

. OO Tag Importances

Sort

] OQ Most Important Tags

Adjustments

. O O Final Tags 14
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The FlrSt Goal: From annotations of objects to the most

scientifically useful (semantic) plain English

Appro aCh labels for that data. [3,8]

1. Encode annotations. @ . @ ‘ S eE=
Pre-Proc ng
. . . . . Clean Annotations
2. Aggregate with cosine similarity . . . . O Om ed using PreTra
. Y Langua eHude\
selection. S . @ . B G vecors
/\gg egate with
nilar Entri
3. Extract nearest token in data space. & . & {E}‘ @ G wersseaveor
Extract Nearest Token
4. Train random forest to predict science . O O?jj e
classes. suence | (Feditiv) S
v M Query Tag Importance
5. Find most informative tokens using .OQ e
4. Early approach Shapley values. l
. OO Most Important Tags
6. Adjust grammar of tokens if needed PV U
J g . OO Final Tags

(small data).

Congratulations! These are now
plain English semantic class targets!

15




Semantic
Classifications
through LLMs

4. Early approach
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Ideally done without the special data format.
Unclear how this would work.

Maybe through concept pruning / debiasing.

Could of course be used as the encoder, however:
» this work was started before GPT3 was released,

» and there was more explainable tooling around to
convince my colleagues that this works.

16
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Radio Galaxy
Morphology

[4] South African Radio Astronomy Observatory (SARAO)

Star Forming Star Forming
Galaxy (SFG) Galaxy (SFG)

Double

4. Early approach

diffuse, double, bridge, extended, amorphous, amorphous,

edge brightened, host, merger, compact, compact, core,
extended, faint, traces host galaxy extended, host, faint, host, small

host, hourglass, traces host galaxy [3] 17
jet, lobes, peak




Classes vs.
Semantic
Taxonomy

5. Application
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Normal domain specific classes:

Single, Double, Classical double, Triple, Narrow-angle tail
(NAT), Wide-angle tail (WAT), Bent tail, Fanaroff & Riley Class
1 (FR I), Fanaroff & Riley Class 2 (FR Il), Fanaroff & Riley
Class 0 (FR 0), Hybrid, X-shaped, S-shaped, C-shaped,
Diffuse, Double-double (DDRG), Core-dominant, Core-jet,
Compact Symmetric Object (CSO), 1-sided, Odd Radio Circle
(ORC), Star-Forming Galaxy (SFG)

Our final semantic classes:

amorphous, asymmetric brightness, asymmetric structure,
bent, bridge, compact, core, diffuse, double, edge brightened,
extended, faint, host, hourglass, jet, lobe, merger, peak,
plume, small, tail, traces host galaxy

[8] 18



Labelling in
Practice

5. Application
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Hard to compute —easy for non-expertlabelers:

amorphous, bent, bridge, core, hourglass, jet, lobe,
merger, plume, tail

Computable —given our expected data products:

asymmetric brightness, asymmetric structure, compact,
diffuse, double, edge brightened, extended, faint, host,
peak, small, traces host galaxy

[8] 19
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SCienCe CaSQ 1: Traces hostgalaxy

. - recovered 37/45 of the confidently classified "Star Forming
EXIStlng Galaxies" in the sample. [8]

populations

J202236-561625 34 J202445-562047
-56°16'00" J205837-575639
-56°20'30"

8
2 30

20"22m40°
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5. Application
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Science Case 2: Hourglass

Outlier detection but not tagged as
for alll amorphous,traces hostgalaxy orbent.[8]

5. Application
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Science Case 3: Hourglass

New pOPUIationS, but not tagged as
? amorphous,traces hostgalaxy orbent.[8]
New probes:

5. Application

g
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=
-
g
5
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20M40™m44° 40° 36°
Right Ascension [J2000]
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Science Case 3: Hourglass

New pOPUIationS, but not tagged as
? amorphous,traces hostgalaxy orbent.[8]
New probes:

5. Application

g
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Conclusion

6. Conclusions
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il

Reduce data labelling costs with cheaper non-
expert labelling.

Reduce barriers to participation and interdisciplinarity.

Mitigates against learned biases from historic labelling
schemes, and allows for new relationships (and
potentially new physics) to be identified.

Must be mindful of the anglocentric nature
of our current approach and the potential
biases that may introduce.

Fine tune models trained on semantic targets to
your specific science case with expert labels.

24
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Reduce data labelling costs with cheaper non-expert labelling.

Reduce annotator education costs by using plain English.

Broader impact on collaboration,
inclusivity, language barriers, barriers to participation
and interdisciplinarity.

Moving away from historical labelling schemes mitigates
against learned biases and allows for new relationships (and
potentially new physics) to be identified.

Must be mindful of the anglocentric nature of our current
experiment and the potential biases that may introduce.

Fine tune your semantically trained models to
your specific science case with expert labels.

micah.bowles@postgrad.manchester.ac.uk
() mb010.github.io
github.com/mb010/Text2Tag 25
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WordNet
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“WordNet®is a large lexical database of English. Nouns,
verbs, adjectives and adverbs are grouped into sets of
cognitive synonyms (synsets), each expressing a distinct
concept. Synsets are interlinked by means of conceptual-
semantic and lexical relations”

WordNet
https://wordnet.princeton.edu/

“WordNetis sometimes called an ontology, a persistent
claim that its creators do not make.”

Wikipedia
https://fen.wikipedia.org/wiki/WordNet#As_a_lexical_ontology

28
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Challenging Case study: Radio Astronomy

Specifically: Radio Galaxy Morphology

Language
Current Examples:

FRI / FRII
Hybrid
WAT
NAT
X-Shaped
ORC

Ramatsoku et al. 2020 || South African Radio Astronomy Observatory
(SARAO)

Limitations:
1. Doesn’'t span the full space of possible morphologies
2. No full information (unlike "neutron™).
7.Q&A 3. Additional education required.
4. Occasionally no consensus as the bounds of classes are
neither linear nor clear!
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