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Research interests:

• Big data

• Representations

• Machine learning

My work:

• MIGHTEE-POL (deep radio survey with polarisation 

measurements)

• Large scale pre-training

• Semantic language
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Goals:

1. Get the most out of our data,

2. Enable research into high dimensional features of data,

3. Allow users to interact with data intuitively,

4. Reduce barriers to the field (i.e. reduce labelling costs).

"A picture is worth a thousand words."

… what about our data?
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Walmsley et al. (2022) https://arxiv.org/abs/2110.12735

Goals:

1. Get the most out of our data,

2. Enable research into high dimensional features of data,

3. Allow users to interact with data intuitively,

4. Reduce barriers to the field (i.e. reduce labelling costs).

"A picture is worth a thousand words."

… what about our data?

https://arxiv.org/abs/2110.12735
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ESA/Hubble NGC 4298 Elmegreen et al. 2009 10.1088/0004-637X/701/1/306.



Introduction

1. Introduction

2. Pre-Training

3. Semantics

4. Early approach

5. Application

6. Conclusions

7. Q&A

6

Introduction to Citizen Science.
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Ramatsoku et al. (2020); South African Radio Astronomy Observatory (SARAO)

Pandya et al. (2024) https://arxiv.org/abs/2310.15232
NASA, ESA, CSA, STScI, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), 
Rebecca Larson (UT Austin)

Radio galaxy 

morphology

Initial test bed.

Bowles+22,23

JWST galaxy 

morphology

Hayley Roberts 

(Minnesota)

https://arxiv.org/abs/2310.15232
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8Balona 2023 https://arxiv.org/abs/2212.10776

Variable Stars with

Planet Hunters TESS

Discussed with

Chris Lintott (Oxford) &

Nora Eisner (Flatiron)

(Likely to recommence 

later this year, after I 

submit my PhD thesis).

https://arxiv.org/abs/2212.10776
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Data volumes to build robust representations for adaptable 

models:

• ImageNet - 1.4 million samples, 21k labels [1]

• JFT – 4 billion samples, 30k labels [2]

Domain specific data sets cost much more to label.

“A picture is worth a thousand words.”

“Car”
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Problem in technical classifications:

Car

vs

Fanaroff-Riley Type 1 (FR I)

The solution:

"A New Task: Deriving Semantic Class Targets for the 

Physical Sciences"

Bowles et al. (2022) and Bowles et al. (2023).
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Ontology ('study of being'): “A set of concepts and 

categories in a subject area or domain that shows their 

properties and the relations between them.” (not the 

ontology of analytic philosophy)

Examples:

• CS: Semantic web (Web Ontology Language) [5]

• BioMed: Basic formal ontology [6], etc.

• AI: WordNet [7] (not quite but pretty close)

(ImageNet is built using WordNet)

Please note: Semantic taxonomies are not ontologies.
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RGZ EMU [8]
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[8]
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Goal: From annotations of objects to the most 
scientifically useful (semantic) plain English 
labels for that data. [3,8]

1. Encode annotations.

2. Aggregate with cosine similarity 
selection.

3. Extract nearest token in data space.

4. Train random forest to predict science 

classes.

5. Find most informative tokens using 
Shapley values.

6. Adjust grammar of tokens if needed 
(small data).

Congratulations! These are now 
plain English semantic class targets!
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Ideally done without the special data format.

Unclear how this would work.

Maybe through concept pruning / debiasing.

Could of course be used as the encoder, however:

• this work was started before GPT3 was released,

• and there was more explainable tooling around to 

convince my colleagues that this works.
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[4] South African Radio Astronomy Observatory (SARAO)

[3]
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Normal domain specific classes:

Single, Double, Classical double, Triple, Narrow-angle tail 

(NAT), Wide-angle tail (WAT), Bent tail, Fanaroff & Riley Class 

1 (FR I), Fanaroff & Riley Class 2 (FR II), Fanaroff & Riley 

Class 0 (FR 0), Hybrid, X-shaped, S-shaped, C-shaped, 

Diffuse, Double-double (DDRG), Core-dominant, Core-jet, 

Compact Symmetric Object (CSO), 1-sided, Odd Radio Circle 

(ORC), Star-Forming Galaxy (SFG)

Our final semantic classes:

amorphous, asymmetric brightness, asymmetric structure, 

bent, bridge, compact, core, diffuse, double, edge brightened, 

extended, faint, host, hourglass, jet, lobe, merger, peak, 

plume, small, tail, traces host galaxy

18[8]
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Hard to compute – easy for non-expert labelers:

amorphous, bent, bridge, core, hourglass, jet, lobe, 

merger, plume, tail

Computable –given our expected data products:

asymmetric brightness, asymmetric structure, compact, 

diffuse, double, edge brightened, extended, faint, host, 

peak, small, traces host galaxy

19[8]
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Traces host galaxy

recovered 37/45 of the confidently classified "Star Forming 

Galaxies" in the sample. [8]

20



Science Case 2:
Outlier detection 
for all!

1. Introduction

2. Pre-Training

3. Semantics

4. Early approach

5. Application

6. Conclusions

7. Q&A

Hourglass

but not tagged as 

amorphous, traces host galaxy or bent. [8]
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Hourglass

but not tagged as 

amorphous, traces host galaxy or bent. [8]
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Hourglass

but not tagged as 

amorphous, traces host galaxy or bent. [8]
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• Reduce data labelling costs with cheaper non-

expert labelling.

• Reduce barriers to participation and interdisciplinarity.

• Mitigates against learned biases from historic labelling 

schemes, and allows for new relationships (and 

potentially new physics) to be identified.

• Must be mindful of the anglocentric nature 

of our current approach and the potential 

biases that may introduce.

• Fine tune models trained on semantic targets to 

your specific science case with expert labels.



Q&A

1. Introduction

2. Pre-Training

3. Semantics

4. Early approach

5. Application

6. Conclusions

7. Q&A

micah.bowles@postgrad.manchester.ac.uk

mb010.github.io

github.com/mb010/Text2Tag 25

• Reduce data labelling costs with cheaper non-expert labelling.

• Reduce annotator education costs by using plain English.

• Broader impact on collaboration, 

inclusivity, language barriers, barriers to participation 

and interdisciplinarity.

• Moving away from historical labelling schemes mitigates 

against learned biases and allows for new relationships (and 

potentially new physics) to be identified.

• Must be mindful of the anglocentric nature of our current 

experiment and the potential biases that may introduce.

• Fine tune your semantically trained models to 

your specific science case with expert labels.
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“WordNet® is a large lexical database of English. Nouns, 

verbs, adjectives and adverbs are grouped into sets of 

cognitive synonyms (synsets), each expressing a distinct 

concept. Synsets are interlinked by means of conceptual-

semantic and lexical relations” 

WordNet

https://wordnet.princeton.edu/

“WordNet is sometimes called an ontology, a persistent 

claim that its creators do not make.”

Wikipedia

https://en.wikipedia.org/wiki/WordNet#As_a_lexical_ontology
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Case study: Radio Astronomy

Specifically: Radio Galaxy Morphology

Current Examples:

● FRI / FRII

● Hybrid

● WAT

● NAT

● X-Shaped

● ORC

Limitations:

1. Doesn’t span the full space of possible morphologies

2. No full information (unlike "neutron").

3. Additional education required.

4. Occasionally no consensus as the bounds of classes are 

neither linear nor clear!

Ramatsoku et al. 2020 || South African Radio Astronomy Observatory 

(SARAO)
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