Al from generated data

Francois CHARTON, Meta Al

Mathematics as a translation task

* Train models to translate problems, encoded as sentences in some
language, into their solutions

* Numeric to numeric 749 => 16
* Symbolic to numeric x2-x-1 => 1+2\/§, 1_2\6
* Symbolic to symbolic x2-x-1=> 2x-1

* Numeric to symbolic 1,1,2,3,5,8...=> u,=u,,+U,,

Maths as translation: learning GCD

* Generate pairs of integers (a,b), compute their GCD: e.g. a=10, b=32,
gcd(a,b)=2

* Repeat to build a large supervised training set

* Integers can be represented as sequences of digits in base 10
e 10: r+J, ‘1’, ‘9’
e 32 r+J, c3), €92
e D) , €92
* Train a model to translate “+°, €1°, ‘0’ , “+°, “3°, 2”7 into ‘+, 2’
* From the generated examples only
* As a “pure language” problem: the model knows no maths

This works!

Symbolic integration / Solving ODE:
* Deep learning for symbolic mathematics (2020): Lample & Charton (ArXiv 1912.01412)
https://arxiv.org/abs/1912.01412

Dynamical systems:
* Learning advanced computations from examples (2021) : Charton, Hayat & Lample (ArXiv 2006.06462)
* Discovering Lyapunov functions with transformers (2023) : Alfarano, Charton, Hayat (3rd MATH&AI workshop, NeurlIPS)

Symbolic regression:
* Deep symbolic regression for recurrent sequences (2022) : d’Ascoli, Kamienny, Lample, Charton (ArXiv 2201.04600)
* End-to-end symbolic regression with transformers (2022) : Kamienny, d’Ascoli, Lample, Charton (ArXiv 2204.10532)

Cryptanalysis of post-quantum cryptography:

* SALSA: attacking lattice cryptography with transformers (2022): Wenger, Chen, Charton, Lauter (ArXiv 2207.04785)
* SALSA PICANTE (2023) Li, Sotakova, Wenger, Mahlou, Garcelon, Charton, Lauter (ArXiv 2303.0478)
* SALSA VERDE (2023) Li, Wenger, Zhu, Charton, Lauter (ArXiv 2306.11641)

Theoretical physics
* Transformers for scattering amplitudes (2023): Merz, Cai, Charton, Nolte, Wilhelm, Cranmer, Dixon (ML4PS Workshop, NeurlPS)

Quantum computing
* Using transformer to simplify ZX diagrams (2023) (3rd MATH&AI Workshop, NeurlPS)

https://arxiv.org/abs/1912.01412

Mathematics as a translation task

Three steps

l. Generate large sets of problems and solutions
Il. Represent problems and solutions as sequences
Ill. Train transformers to translate problems into solutions

Mathematics as a translation task

* Models trained from generated data allow for datasets as

large as one wishes

* What is the impact of data generation on learning?

* An important question for LLM for physics

Deep learning for symbolic mathematics

(Lample, Charton 2019)

* Undergrad maths: compute symbolic integrals

cos (22) . log(cos(e)—1) _log(cos (z)+ 1)
sin () 2 2

+ 2 cos ()

* Generate data: pairs (f, F) of functions and their integral
* Encode as sequences of symbols

* Train a transformer to predict F from f

Two methods for data generation

* Forward
* Generate a random function f
 Compute its integral F
* Only for problems you know how to solve
* Slow

e Backward
e Generate a random function F
 Compute its derivative f

Training models

* 6-layer encoder-decoder transformers with 256 dimensions and
8 attention heads

* The model is trained on generated data (20-40M examples)
e Supervised learning, minimizing cross-entropy
* A pure language task: the model has no understanding of maths

* Tested on held-out data (i.e. not seen during training)

* Solutions are verified with an external tool (SymPy)
* Using problem-related mathematical metrics

In-domain results

e Performance on held-out test sets with the same distribution as training

* Almost 100% no matter the generation procedure
* Outperforms best computer algebras

Integration (FWD) Integration (BWD)
Beam size 1 93.6 98.4
Beam size 10 95.6 99.4
Beam size 50 96.2 99.7

Integration (BWD)

Mathematica (30s) 84.0
Matlab 65.2
Maple 67.4

10

Out-of-distribution results

* Models trained on FWD do not generalize to BWD

Forward (FWD) Backward (BWD)
Training data Beam1l Beam 10 Beam350 | Beam1 Beam 10 Beam 50
FWD 93.6 95.6 96.2 10.9 13.9 17.2
BWD 18.9 24.6 27.5 98.4 99.4 99.7

* Why?

11

Generating data

Functions and their primitives generated with the forward approach (FWD)

cos ' (z)
x (2x + cos (2x))

x(x+4)
T+ 2

cos (2x)
sin ()

3z” sinh™" (2z)

z° log (x2) ‘

z* log (m2)4 z* log (w2)3 3z* log (:1:2)2 B 3z*log (z°) 3z*

zcos ' (z) — /1 — x2

E L sin (2x) = cos (2x)

3 2 4
2
> + 22 — 4log (x + 2)
log (cos (z) —1) log(cos(z) +1) +2.cos (z)
2 2
2. [Arp2 2
2> sinh™ (2x) — z 42: +1 + 4:1;24— L

4

2 + 4 4 i 8

Generating data

Functions and their primitives generated with the backward approach (BWD)

cos (z) + tan” (z) + 2 x + sin (z) + tan (z)
1 vV —1vz +1
2/ — 1z + 1 x
(cosix(x) + tan (m)) tan (x) z tan”® (z)
z tan (%) + Cf)‘g;z)g) o7
- x tan (?)
R ! o
log (log (z)) log (z) log (log (x))* log (log (z))
—22° sin (z°) tan (z) + = (tan® (z) + 1) cos (z°) + cos (z°) tan (z) z cos (z°) tan (z)

A third data set: integration by parts

* Integration by part
* Generate random functions Fand G
 Compute their derivative fand g
* If fG is in the dataset, we get Fg for free using /Fg = FG — /fG

* Derived from the backward model
* Problem and solution length are more balanced

Generating data

Functions and their primitives generated with the integration by parts approach (IBP)

z (x + log (z))

(z + 3)°

T+ V2

cos? (x)

z (22 4+ 5) (3z +2log (x) + 1)

<$ o sin22x(a:) + tanl(a:)) log (CB)

sin ()

z° sinh (z)

z? (4 + 6log (x) — 3)
12

—z + (x + 3) log (x + 3)
x+3

(:c + \/5) tan () + log (cos (x))

z? (27z° 4 24z log (z) + 94z + 901log (z))
18

xlog (z) + tan (x)
sin (z) tan ()

z° cosh (z) — 3z sinh (z) + 6z cosh (z) — 6sinh (z)

More out-of-distribution results

Forward (FWD)

Backward (BWD)

Integration by parts (IBP)

Training data Beam1 Beam 10 Beam50 | Beam1 Beam 10 Beam50 | Beam1 Beam 10 Beam 50
FWD 93.6 95.6 96.2 10.9 13.9 17.2 85.6 86.8 88.9
BWD 18.9 24.6 27.5 98.4 99.4 99.7 42.9 54.6 59.2
BWD + IBP 41.6 54.9 56.1 98.2 99.4 99.7 96.8 99.2 99.5

Models trained on FWD do generalize to IPB
OOD generalization is possible, when test distributions are not too far away from training distributions

Training distribution matters
Out-of-distribution generalization is possible so long test distribution is not ‘too far’

16

Linear algebra with transformers

(Charton 2021)

 Basic linear algebra is learned, with small models
* Transposition: 100% accuracy, up to 30x30 matrices, with 1-layer transformers
e Addition: 99% accuracy, up to 20x20 matrices, 2-layer transformers

e Matrix-vector product: 100% accuracy, up to 10x10 matrices, 2-layer transformers
* Multiplication: 100% accuracy, 5x5 matrices, 1 / 4 layer transformers

 Advanced tasks can also be learned

* Eigenvalues: 100% accuracy for 5x5 to 20x20 matrices

* Eigen decomposition: 97% for 5x5, 82% for 6x6 matrices
» SVD decomposition: 99% accuracy for 4x4 matrices

* Matrix inversion: 90% for 5x5 matrices

Computing eigenvalues — the importance of training distributions

* Models predict the eigenvalues of 5x5 symmetric matrices with 100%
accuracy

* Training set symmetric matrices with independent coefficients:
Wigner matrices
* Eigenvalues are distributed as a semi-circle
* Bounded support, symmetric around 0
e Variance depends on variance of coefficients, and dimension matrix

* Are we learning eigenvalues, or eigenvalues of Wigner matrices?

Tweaking the training distribution

* Wigner matrices (symmetric matrices with independent identically
distributed entries) can be decomposed as M=HDH', with

* D diagonal, with entries distributed as a semi circle
* H orthogonal

* If the coefficients of M are Gaussian, the directions of columns of H are uniformly
distributed over the unit sphere

* To generate matrices with different distributions of eigenvalues
* Generate M with Gaussian independent entries
e Compute M=HDH'
e Replace D with D’, from a different distribution
¢ Recompute M’ = HD'H'

Tweaking the training distribution

* We generate 7 distributions

* 4 with positive and negative eigenvalues

* Semi-circle: the original Wigner matrices
* Uniform eigenvalues

* Laplace distributed eigenvalues
e Gaussian eigenvalues

* 3 with positive eigenvalues only
* Absolute values of semicircle eigenvalues
* Absolute values of Laplace eigenvalues
* Marcenko-Pastur distribution (i.e. random covariance matrices)

Eigenvalues — out-of-distribution generalization

Semi-circle Uniform Gaussian Laplace abs-sc abs-Lapl Marchenko

Semi-circle 100 34 36 39 1 5 0

Uniform 93 100 76 70 92 70 2

Gaussian 100 100 100 100 100 100 99
Laplace 100 100 100 100 100 100 100
Abs-semicircle 0 5 4 4 100 78 20
Abs-Laplace 0 4 5 5 100 100 100
Marchenko-Pastur 0 4 4 4 100 76 100

Table 1: Out-of-distribution generalization. Eigenvalues of 5x5 matrices. Rows are the training distributions,
columns the test distributions.

e Gauss and Laplace generalize to Wigner (but not the other way around)

* Can generalize far away from training distribution: to positive definite
matrices

Eigenvalues — out-of-distribution generalization

e Robust distributions learn faster

Semi-circle Uniform Gaussian Laplace abs-sc abs-Lapl Marchenko

8x8 matrices

Semicircle 0 0 0 0 0 0 0
Uniform 91 100 65 57 89 55 0
Gaussian 100 100 100 99 100 99 41
Laplace 100 100 100 100 100 100 97
Abs-semicircle 0 1 1 0 100 53 0
Abs-Laplace 0 1 1 1 100 100 98
Marchenko-Pastur 0 0 0 0 1 1 20
10x10 matrices

Gaussian (12/1 layers) 100 100 100 98 100 97 3
Laplace (8/1 layers) 100 100 100 100 100 100 74

Table 2: Out-of-distribution generalization. Eigenvalues of 8x8 and 10x10 matrices, accuracy after 36
million examples. Rows are the training distributions, columns the test distributions.

Take aways

* Qut-of-distribution generalization is possible

» Special “robust” distributions exist
* Allow for faster learning

Can transformers learn the greatest common divisor?

(Charton 2023)

* Generate random pairs of integers between 1 and 1,000,000
 Compute their gcd, train a model to predict it
* Test on a held-out dataset (100k examples)

* Problem space size: 1012, no chance that the model memorizes all
the cases

e Operands are uniformly distributed

Can transformers learn the greatest common divisor?

100

* Encoding input/output in base 30 [— _—

e 1-layer transformers, 64 dimensions N r

* 85% accuracy after one epoch (300k
examples)

* 94.6% accuracy after 150 epochs (45M
examples)

40 1

* Surely, the maths are learned

20 1

0 20 40 60 80 100 120 140

Can transformers learn the greatest common divisor?

100

* Encoding input/output in base 31 e

* Accuracy plateaus around 61%
* Accuracy seems base-dependent

60 1 ————

40

20 1

0 20 40 60 80 100 120 140

Learning the greatest common divisor

100

* Top to bottom, bases 30, 6, 10, e
2,3,31... S e 5
* Performance depends on the {:
base we use to represent A
numbers ° "“ T

* Are we really learning the
maths? w.

20 1

0 20 40 60 80 100 120 140

Looking at model predictions

Table 3: Model predictions and their frequencies, for GCD 1 to 36. Correct predictions in bold face.

Base 2 Base 10 Base 2 Base 10 Base 2 Base 10
GCD Pred % Pred % GCD Pred % Pred % GCD Pred % Pred %
1 1 100 1 100 13 1 100 1 100 25 1 100 25 100
2 2 100 2 100 14 2 100 2 100 26 2 100 2 100
3 1 100 1 100 15 1 100 5 100 27 1 100 1 100
4 4 100 4 100 16 16 100 16 99.7 28 4 100 4 100
5 1 100 5 100 17 1 100 1 100 29 1 100 1 100
6 2 100 2 100 18 2 100 2 100 30 2 100 10 100
7 1 100 1 100 19 1 100 1 100 31 1 100 1 100
8 8 100 8 100 20 4 100 20 100 32 32 99.9 16 99.9
9 1 100 1 100 21 1 100 1 100 33 1 100 1 100
10 2 100 10 100 22 2 100 2 100 34 2 100 2 100
11 1 100 1 100 23 1 100 1 100 35 1 100 5 100
12 4 100 4 100 24 8 100 8 100 36 4 100 4 100

Learning the greatest common divisor???

* Inbase 2,gcd1,2,4,8, 16... are correctly predicted
* The model counts the rightmost zeroes
e 11100 (28)and 1110 (14) have gcd 2
e 111100 (60) and 111000 (56) have gcd 4
* In composite bases, the model learns multiples of divisors of the base
* In base 10 multiples of 20 end with 00, 20, 40, 60 or 80

The three rules

(R1) Predictions are deterministic. The model predicts a unique value f (k) for almost all (99.9%)
pairs of integers with GCD k. Predictions are correct when f(k) = k.

(R2) Correct predictions are products of primes dividing B. For base 2, they are 1, 2, 4, 8§, 16,
32 and 64. For base 31, 1 and 31. For base 10, all products of elements from {1, 2,4,8,16}
and {1, 5,25}. For base 30, all products of {1, 2,4, 8}, {1,3,9,27}. and {1, 5,25}.

(R3) f(k) is the largest correct prediction that divides k. For instance, f(8) = 8, and f(7) = 1,
for base 2 and 10, but f(15) = 5 for base 10 and f(15) = 1 for base 2.

So far disappointing

Accuracy may be high but only a few GCD are learned

Table 2: Number of correct GCD under 100 and accuracy. Best of 6 experiments.

Base 2 3 4 > 6 7 10 11 12 15
Correct GCD 7 D 7 3 19 3 13 2 19 9
Accuracy 81.6 689 814 640 0915 625 847 61.8 0915 71.7
Base 30 31 60 100 210 211 420 997 1000 1024

Correct GCD 27 2 28 13 32 1 38 1 14 7
Accuracy 947 613 950 847 955 613 968 613 847 815

Large bases and grokking

GCD predicted Train loss
* Base 2023 =7.17.17 16 08
e After 10 epochs: 1,7, and 17 are 14 o7
learned, accuracy 63%, 3 GCD 12 "
* At epoch 101, 3 is learned, together "
with 21 (3.7) and 51 (3.17) ° "
* At epoch 200, 2 is learned (and 6, ° "
14, 34,42): 11 GCD ' /,_ﬂ_/
« At epoch 600, 4 is learned: 16 GCD, ™
93% accuracy "o w0 w0 %0 S oew 70 we T 10w a0 s e 70w

Figure 5: Learning curves for base B=2023. 3 different model initializations.

Large bases and grokking

This phenomenon is related to grokking, first described by Power. [22] for modular arithmetic. Table 5
presents model predictions for base 1000, which continue to respect rules R1 and R3. In fact, we can
update the three rules into the three rules with grokking:

(G1) Prediction is deterministic. All pairs with the same GCD are predicted the same, as f(k).

(G2) Correct predictions are products of primes divisors of B, and small primes. Small
primes are learned roughly in order, as grokking sets in.

(G3) f(k) is the largest correct prediction that divides k.

Still only a few GCD are learned

Base GCD predicted Divisors predicted Non-divisors (epoch learned)
625 = 54 6 {1,5,25} 2 (634)

2017 4 {1} 2 (142), 3 (392)

2021 = 43.47 10 {1,43}, {1,47) 2 (125), 3 (228)

2023 = 7.172 16 {173 41170 3 (101), 2 (205), 4 (599)
2025 = 3%.52 28 {1,3,9,27, 81}, {1,5,25} 2 (217), 4 (493), 8 (832)
2187 = 37 20 {1,3,9,27,81} 2 (86), 4 (315), 5 (650)
2197 = 13° 11 {1,13} 2 (62), 3 (170), 4 (799)

2209 = 472 8 (1,47} 2 (111), 3 (260), 9 (937)
2401 = 74 10 {1,7,49) 2 (39), 3 (346)

2401 = 74 14 {1,7,49} 3 (117), 2 (399), 4 (642)
2744 = 23.73 30 {1,2,4,8,16,32}, {1,7,49} 3 (543), 5 (1315)

3125 = 5° 16 {1,5,25} 2 (46), 3 (130), 4 (556)

3375 = 33.53 23 {1,3,9,27}, {1,5,25} 2 (236), 4 (319)

4000 = 2°.53 24 {1,2,48,16,32}, {1,5,25} 3(599)

4913 = 173 17 (1,17} 2 (54), 3 (138), 4 (648), 5 (873)
5000 = 23.5% 28 {1,2,4,8,16,32}, {1,5,25} 3 (205), 9 (886)

10000 = 2*.5% 22 {1,2,4,8,16}, {1,5,25) 3 (211)

Table 6: Predicted ged, divisors and non-divisors of B. Best model of 3. For non-divisors, the epoch learned
is the first epoch where model achieves 90% accuracy for this gcd.

Engineering the training distribution

* Training sets have uniformly distributed operands
* 90% of them are over 100 000
* Small GCD, e.g. gcd(6,9) are never seen
* This is not how we are taught / teach arithmetic
* From easy cases that we sometimes learn by rote
* Generalizing to harder cases once easy cases are mastered
* Curriculum learning has draw backs: the distribution changes over time
* Learn the easy cases, but then forget them

Engineering the training distribution

* Log-uniform operands " s
* k appears with probability 1/k oo — 12
 As many 1-digit numbers as 6-digit —°

50

* No impact on the outcome distribution (1/k?)
* No impact on the test sets

40

30

* Learning is noisier, but more GCD are learned .

10

o3 200 400 600 800 1000
Epochs
Figure 3: Learning curves, Log-uniform

training set.

Engineering the training distribution

* Log-uniform operands, fast grokking
e All primes up to 23

Table 6: Accuracy and correct GCD (up to 100), log-uniform operands. Best of three models, trained for
1000 epochs (300M examples). All models are tested on 100,000 pairs, uniformly distributed between 1 and 106.

Base Accuracy Correct GCD | Base Accuracy GCD | Base Accuracy GCD

2 94.4 25 60 98.4 60 2025 99.0 70
3 96.5 36 100 98.4 60 2187 98.7 66
4 98.4 58 210 98.5 60 2197 98.8 68
5 97.0 42 211 96.9 41 2209 98.6 65
6 96.9 39 420 98.1 59 2401 99.1 73
7 96.8 40 625 98.2 57 2744 98.9 72
10 97.6 48 997 98.3 64 3125 98.6 65
11 97.4 43 1000 99.1 71 3375 98.8 67
12 98.2 55 1024 99.0 71 4000 98.7 66
15 97.8 52 2017 98.6 63 4913 98.2 57
30 98.2 56 2021 98.6 66 5000 98.6 64
31 97.2 44 2023 98.7 65 10000 98.0 56

Learning large primes, the outcome distribution

* GCD are distributed in 1/k?, very few examples with large primes
* Alog-uniform distribution of operands and outcomes
e All primes upto 53

Base Accuracy Correct GCD | Base Accuracy GCD | Base Accuracy GCD

2 16.5 17 60 96.4 73 2025 919 91
3 93.7 51 100 97.1 78 2187 97.8 91
4 91.3 47 210 96.2 80 2197 97.6 90
5 922 58 211 953 67 2209 97.6 87
6 95.2 56 420 96.4 88 2401 97.8 89
7 93.0 63 625 96.0 80 2744 97.6 91
10 94.3 65 997 97.6 83 3125 97.7 91
11 94.5 57 1000 97.9 91 3375 97.6 91
12 95.0 70 1024 98.1 90 4000 97.3 90
15 95.4 62 2017 976 88 4913 97.1 88
30 95.8 72 2021 98.1 89 5000 97.1 89
31 94.4 64 2023 97.5 88 10000 95.2 88

Table 9: Accuracy and correct GCD, log-uniform operands and outcomes. Best model of 3.

Take aways

* Predictions can be deterministic and explainable

* The model learns a sieve:
* It classifies input pairs (a,b) into clusters with common divisors

* And predicts the smallest common divisor in the class (when outcomes are
not uniformly distributed)

* Training distribution impact accuracy, no matter the test distribution

Conclusions

* Transformers can learn mathematics
A new field for research
* With applications to science

* Training distributions matter
* Some training distributions allow for faster learning and better generalization

