
AI from generated data

François CHARTON, Meta AI

Mathematics as a translation task

• Train models to translate problems, encoded as sentences in some
language, into their solutions
• Numeric to numeric 7+9 => 16

• Symbolic to numeric x2-x-1 => !" #
$
, !% #

$
• Symbolic to symbolic x2-x-1 => 2x – 1
• Numeric to symbolic 1,1,2,3,5,8... => un = un-1+un-2

Maths as translation: learning GCD

• Generate pairs of integers (a,b), compute their GCD: e.g. a=10, b=32,
gcd(a,b)=2
• Repeat to build a large supervised training set

• Integers can be represented as sequences of digits in base 10
• 10: ‘+’, ‘1’, ‘0’
• 32: ‘+’, ‘3’, ‘2’
• 2: ‘+’, ‘2’

• Train a model to translate ‘+’,‘1’,‘0’,‘+’,‘3’,‘2’ into ‘+’, ‘2’
• From the generated examples only
• As a “pure language” problem: the model knows no maths

This works!

• Symbolic integration / Solving ODE:
• Deep learning for symbolic mathematics (2020): Lample & Charton (ArXiv 1912.01412)
https://arxiv.org/abs/1912.01412

• Dynamical systems:
• Learning advanced computations from examples (2021) : Charton, Hayat & Lample (ArXiv 2006.06462)
• Discovering Lyapunov functions with transformers (2023) : Alfarano, Charton, Hayat (3rd MATH&AI workshop, NeurIPS)

• Symbolic regression:
• Deep symbolic regression for recurrent sequences (2022) : d’Ascoli, Kamienny, Lample, Charton (ArXiv 2201.04600)
• End-to-end symbolic regression with transformers (2022) : Kamienny, d’Ascoli, Lample, Charton (ArXiv 2204.10532)

• Cryptanalysis of post-quantum cryptography:
• SALSA: attacking lattice cryptography with transformers (2022): Wenger, Chen, Charton, Lauter (ArXiv 2207.04785)
• SALSA PICANTE (2023) Li, Sotakova, Wenger, Mahlou, Garcelon, Charton, Lauter (ArXiv 2303.0478)
• SALSA VERDE (2023) Li, Wenger, Zhu, Charton, Lauter (ArXiv 2306.11641)

• Theoretical physics
• Transformers for scattering amplitudes (2023): Merz, Cai, Charton, Nolte, Wilhelm, Cranmer, Dixon (ML4PS Workshop, NeurIPS)

• Quantum computing
• Using transformer to simplify ZX diagrams (2023) (3rd MATH&AI Workshop, NeurIPS)

https://arxiv.org/abs/1912.01412

Mathematics as a translation task

Three steps

I. Generate large sets of problems and solutions
II. Represent problems and solutions as sequences
III. Train transformers to translate problems into solutions

Mathematics as a translation task

•Models trained from generated data allow for datasets as

large as one wishes

•What is the impact of data generation on learning?

• An important question for LLM for physics

Deep learning for symbolic mathematics
(Lample, Charton 2019)

• Undergrad maths: compute symbolic integrals

• Generate data: pairs (f, F) of functions and their integral
• Encode as sequences of symbols
• Train a transformer to predict F from f

Two methods for data generation

• Forward
• Generate a random function f
• Compute its integral F
• Only for problems you know how to solve
• Slow

• Backward
• Generate a random function F
• Compute its derivative f

Training models

• 6-layer encoder-decoder transformers with 256 dimensions and
8 attention heads
• The model is trained on generated data (20-40M examples)

• Supervised learning, minimizing cross-entropy
• A pure language task: the model has no understanding of maths

• Tested on held-out data (i.e. not seen during training)
• Solutions are verified with an external tool (SymPy)

• Using problem-related mathematical metrics

In-domain results

10

• Performance on held-out test sets with the same distribution as training
• Almost 100% no matter the generation procedure
• Outperforms best computer algebras

Out-of-distribution results

• Models trained on FWD do not generalize to BWD

• Why?

11

Generating data

Generating data

A third data set: integration by parts

• Integration by part
• Generate random functions F and G
• Compute their derivative f and g
• If fG is in the dataset, we get Fg for free using

• Derived from the backward model
• Problem and solution length are more balanced

Z
Fg = FG�

Z
fG

<latexit sha1_base64="HveuHSvOOmUf1yyFT9PvoUcAxuo=">AAACAnicbVDLSgMxFL3js9bXqCtxEyyCG8tUi4+FUBSsywr2Ae1QMmmmDc08SDJCGYobf8WNC0Xc+hXu/Bsz00HUeiDhcM693HuPE3ImlWV9GjOzc/MLi7ml/PLK6tq6ubHZkEEkCK2TgAei5WBJOfNpXTHFaSsUFHsOp01neJn4zTsqJAv8WzUKqe3hvs9cRrDSUtfc7jBfoSvUR+f6r6IDlAouqnbNglW0UqBpUspIATLUuuZHpxeQyKO+IhxL2S5ZobJjLBQjnI7znUjSEJMh7tO2pj72qLTj9IQx2tNKD7mB0E/PT9WfHTH2pBx5jq70sBrIv14i/ue1I+We2jHzw0hRn0wGuRFHKkBJHqjHBCWKjzTBRDC9KyIDLDBROrV8GsJZguPvk6dJ47BYOiqWb8qFykUWRw52YBf2oQQnUIFrqEEdCNzDIzzDi/FgPBmvxtukdMbIerbgF4z3L8eDlJw=</latexit>

Generating data

More out-of-distribution results

• Models trained on FWD do generalize to IPB
• OOD generalization is possible, when test distributions are not too far away from training distributions

• Training distribution matters
• Out-of-distribution generalization is possible so long test distribution is not ‘too far’

16

Linear algebra with transformers
(Charton 2021)

• Basic linear algebra is learned, with small models
• Transposition: 100% accuracy, up to 30x30 matrices, with 1-layer transformers
• Addition: 99% accuracy, up to 20x20 matrices, 2-layer transformers
• Matrix-vector product: 100% accuracy, up to 10x10 matrices, 2-layer transformers
• Multiplication: 100% accuracy, 5x5 matrices, 1 / 4 layer transformers

• Advanced tasks can also be learned
• Eigenvalues: 100% accuracy for 5x5 to 20x20 matrices
• Eigen decomposition: 97% for 5x5, 82% for 6x6 matrices
• SVD decomposition: 99% accuracy for 4x4 matrices
• Matrix inversion: 90% for 5x5 matrices

Computing eigenvalues – the importance of training distributions

• Models predict the eigenvalues of 5x5 symmetric matrices with 100%
accuracy
• Training set symmetric matrices with independent coefficients:

Wigner matrices
• Eigenvalues are distributed as a semi-circle
• Bounded support, symmetric around 0
• Variance depends on variance of coefficients, and dimension matrix

• Are we learning eigenvalues, or eigenvalues of Wigner matrices?

Tweaking the training distribution

• Wigner matrices (symmetric matrices with independent identically
distributed entries) can be decomposed as M=HDHT, with
• D diagonal, with entries distributed as a semi circle
• H orthogonal
• If the coefficients of M are Gaussian, the directions of columns of H are uniformly

distributed over the unit sphere

• To generate matrices with different distributions of eigenvalues
• Generate M with Gaussian independent entries
• Compute M=HDHT

• Replace D with D’, from a different distribution
• Recompute M’ = HD’HT

Tweaking the training distribution

• We generate 7 distributions
• 4 with positive and negative eigenvalues
• Semi-circle: the original Wigner matrices
• Uniform eigenvalues
• Laplace distributed eigenvalues
• Gaussian eigenvalues

• 3 with positive eigenvalues only
• Absolute values of semicircle eigenvalues
• Absolute values of Laplace eigenvalues
• Marcenko-Pastur distribution (i.e. random covariance matrices)

Eigenvalues – out-of-distribution generalization

• Gauss and Laplace generalize to Wigner (but not the other way around)
• Can generalize far away from training distribution: to positive definite

matrices

Eigenvalues – out-of-distribution generalization

• Robust distributions learn faster

Take aways

• Out-of-distribution generalization is possible
• Special ”robust” distributions exist
• Allow for faster learning

Can transformers learn the greatest common divisor?
(Charton 2023)

• Generate random pairs of integers between 1 and 1,000,000
• Compute their gcd, train a model to predict it
• Test on a held-out dataset (100k examples)

• Problem space size: 1012 , no chance that the model memorizes all
the cases
• Operands are uniformly distributed

Can transformers learn the greatest common divisor?

• Encoding input/output in base 30
• 1-layer transformers, 64 dimensions
• 85% accuracy after one epoch (300k

examples)
• 94.6% accuracy after 150 epochs (45M

examples)

• Surely, the maths are learned

Can transformers learn the greatest common divisor?

• Encoding input/output in base 31
• Accuracy plateaus around 61%
• Accuracy seems base-dependent

Learning the greatest common divisor

• Top to bottom, bases 30, 6, 10,
2, 3, 31…
• Performance depends on the

base we use to represent
numbers
• Are we really learning the

maths?

Looking at model predictions

Learning the greatest common divisor???

• In base 2, gcd 1,2,4,8, 16… are correctly predicted
• The model counts the rightmost zeroes

• 11100 (28) and 1110 (14) have gcd 2
• 111100 (60) and 111000 (56) have gcd 4

• In composite bases, the model learns multiples of divisors of the base
• In base 10 multiples of 20 end with 00, 20, 40, 60 or 80

The three rules

So far disappointing

Accuracy may be high but only a few GCD are learned

Large bases and grokking

• Base 2023 = 7.17.17
• After 10 epochs: 1,7, and 17 are

learned, accuracy 63%, 3 GCD
• At epoch 101, 3 is learned, together

with 21 (3.7) and 51 (3.17)
• At epoch 200, 2 is learned (and 6,

14, 34, 42): 11 GCD
• At epoch 600, 4 is learned: 16 GCD,

93% accuracy

Large bases and grokking

Still only a few GCD are learned

Engineering the training distribution

• Training sets have uniformly distributed operands
• 90% of them are over 100 000
• Small GCD, e.g. gcd(6,9) are never seen

• This is not how we are taught / teach arithmetic
• From easy cases that we sometimes learn by rote
• Generalizing to harder cases once easy cases are mastered

• Curriculum learning has draw backs: the distribution changes over time
• Learn the easy cases, but then forget them

Engineering the training distribution

• Log-uniform operands
• k appears with probability 1/k
• As many 1-digit numbers as 6-digit

• No impact on the outcome distribution (1/k2)
• No impact on the test sets

• Learning is noisier, but more GCD are learned

Engineering the training distribution

• Log-uniform operands, fast grokking
• All primes up to 23

Learning large primes, the outcome distribution

• GCD are distributed in 1/k2, very few examples with large primes
• A log-uniform distribution of operands and outcomes
• All primes up to 53

Take aways

• Predictions can be deterministic and explainable
• The model learns a sieve:
• It classifies input pairs (a,b) into clusters with common divisors
• And predicts the smallest common divisor in the class (when outcomes are

not uniformly distributed)

• Training distribution impact accuracy, no matter the test distribution

Conclusions

• Transformers can learn mathematics
• A new field for research
• With applications to science

• Training distributions matter
• Some training distributions allow for faster learning and better generalization

