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Unanswered questions
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Unanswered questions

3

What is the nature of 
dark matter/energy?

What’s up with neutrino masses?

Why is the universe so 
matter-dominated?

How does gravity operate in 
the quantum regime?

Why is the Higgs 
mass so light?Why is gravity 

so weak?



We don’t know yet how to answer these questions...

but we have a ton of interesting data to comb through, 
and it looks like AI will be essential to that process.
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AI
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Foundation 
models

Large, diverse, 
interdisciplinary 

datasets



Foundation models are pre-trained on large and diverse datasets. 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Foundation models are (quasi-)generalists.

They can make good predictions out-of-the-box on several unseen tasks,  
and they can be fine-tuned for better performance on a variety of other tasks. 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Why might we want to build a foundation 
model for fundamental physics research? 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A foundation model could provide a better starting point than 
training from scratch for training new AI models on physics 

data, particularly if training data is limited or expensive. 
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1. Efficiency:



A foundation model could reveal connections in data collected 
from disparate instruments or even sub-disciplines, transcending 

the scope of any one particular experiment’s vantage point. 
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2. Interdisciplinarity:



A foundation model could foster more interactive, playful, 
curiosity-driven experiences with our data, challenging our default 

assumptions about how typical analyses should be done and 
inviting new, highly creative strategies.
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3. Creativity:



It’s (relatively) straightforward to imagine constructing a 
foundation model trained on data that can be neatly 

combined via a standard input format (e.g. text, 2D images). 

But physics data is far more heterogeneous and multi-scale.
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Science GPT???



Fundamental physics data takes many forms and requires context.
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We need to find a way to combine all of our inputs into a 
single, shared “embedding space” – i.e. a common language 

that our foundation model understands.
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For a full-scale ScienceGPT, this will likely involve some specialized embedding structures, e.g.: 

We need to find a way to combine all of our inputs into a 
single, shared “embedding space” – i.e. a common language 

that our foundation model understands.

(Driess et. al., PaLM-E, 2023) 

https://palm-e.github.io/
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For a full-scale ScienceGPT, this will likely involve some specialized embedding structures, e.g.: 

We need to find a way to combine all of our inputs into a 
single, shared “embedding space” – i.e. a common language 

that our foundation model understands.

(Mizrahi & Bachmann et. al., 4M, 2023) 

https://4m.epfl.ch/
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But for today, let’s imagine we do the simplest version of this: treat all your data as text. 

We need to find a way to combine all of our inputs into a 
single, shared “embedding space” – i.e. a common language 

that our foundation model understands.
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Wrong! It’s 10,427,202. 

Faith and Fate: Limits of Transformers on Compositionality. arXiv:2305.18654 [cs.CL] (2023) 

If we repeat this many times, we’ll find that it will only give the correct answer around 4% of the time. 

https://arxiv.org/abs/2305.18654


Large Language Models (LLMs) struggle to understand 
what makes numbers different from other kinds of text.
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[1] Do NLPs Know Numbers? Probing Numeracy in Embeddings. https://aclanthology.org/D19-1534.pdf   
[2] NumGPT: Improving Numeracy Ability of Generative Pre-trained Models. arXiv:2109.03137 [cs.CL].  

Existing embeddings can’t generalize out-of-distribution… 

Fixed Word 
Embeddings 

Contextual 
Word 
Embeddings 

https://aclanthology.org/D19-1534.pdf
https://arxiv.org/abs/2109.03137
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[1] Do NLPs Know Numbers? Probing Numeracy in Embeddings. https://aclanthology.org/D19-1534.pdf   
[2] NumGPT: Improving Numeracy Ability of Generative Pre-trained Models. arXiv:2109.03137 [cs.CL].  

Existing embeddings can’t generalize out-of-distribution…  …and they behave erratically. 

Fixed Word 
Embeddings 

Contextual 
Word 
Embeddings 

https://aclanthology.org/D19-1534.pdf
https://arxiv.org/abs/2109.03137
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One core problem is the need to map every number onto a finite set of “tokens”. 
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Dedicated numerical encodings see trade-offs between accuracy, range, and vocabulary size.

F. Charton. Linear Algebra with Transformers. arXiv:2112.01898 [cs.LG].  

https://arxiv.org/abs/2112.01898


We propose a new numerical encoding scheme that 
uses just a single token and renders a language model 

end-to-end continuous. 
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“Electron mass = 0.511 MeV”

1. Convert to text & extract numerical values:

“Electron mass = [NUM] MeV”

2. Tokenize:
[0] [150] [38] [10] [5] [971] [1]

Tokenizer Dictionary

“ → [0] 
” → [1]

…
[NUM] → [5]

…
= → [10]

Mass → [38]
Electron → [150]

MeV → [971]

3. Multiply numerical values into each [NUM] embedding:

[0] [150] [38] [10] [5] [971] [1]

0.511
0.511
0.511
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“Muon mass = [???] MeV”

[0] [151] [38] [10] [6] [971] [1]

Tokenizer Dictionary

“ → [0] 
” → [1]

…
[NUM] → [5]
[???] → [6]

…
= → [10]

Mass → [38]
Electron → [150]

Muon → [151]
MeV → [971]

During inference, we can use a mask ([???]) to tell the network where we want to guess a token. 

If a [NUM] token is predicted, the model also prompts a dedicated number 
transformer head to predict its value. 

“Muon mass = 105.7 MeV”

105.7



This encoding strategy has 3 main benefits: 

● Continuity

○ It embeds key information about how numbers continuously relate to one 
another, making its predictions more appropriate for many scientific applications.

● Interpolation

○ It makes better out-of-distribution predictions than other numerical encodings.

● Efficiency

○ By using just a single token to represent any number, it requires less memory, 
compute resources, and training time to achieve strong results.
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When tested on the task of temperature forecasting from a real-world dataset, 
xVal achieves the lowest loss with the shortest training time. 



When tested on the task of extracting orbital data from simulated 
planetary motion, xVal shows improved out-of-distribution predictions.
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Part 2
Challenges



Challenge I: Inefficiency
Potential Solution: Modality specific coding

● Removing all structure and turning the problem into textual tokens means that the model will have to 
learn these structures itself. (Very data hungry)

● Example. Serializing images makes it hard for the model to take advantage of local correlations.
Solution: Use more specialized tokenization scheme for images.

● Many examples and extensions of this idea.
(e.g. [Google Palm-E March 2023],
[Meta ImageBind May 2023],
[Apple 4M Dec 2023], …)

● There is a tradeoff between generality and efficiency.
(No free lunch)



Time for a few rounds of…

Can GPT4 even do that?!��

Challenge II:



Question 1.
Count the ones (simple version)

● Success rate is ~70%.

● The task is easy, GPTs (causal autoregressive models) can in-principle solve this efficiently.

��



● Count the number of ones between a and b:

“ 1 0 1 0 1 a 0 1 1 1 b 0 0 0 1”

● Easy for transformer with causal mask (and <BOS> token): solvable with finite depth (D >= 2)

● How? 

○ Layer 1: Each token xi , look back and tag if number of ‘a’s (na) > 0 and number of ‘b’s  nb>0.

○ Layer 2: Each token, look back and count the number of 1s for for tokens where na>0 but nb=0.

○ The last token holds the answer.

This is a transformer circuit! 

Question 1.
Count the ones (simple version)



suggestions based
on LLM lore

Question 2.
Count the ones (select and count task)

● Can a transformer based model solve the following problem?

● Count the number of ones between the last a,b pair:

“1 0 1 1 0 1 a 0 1 0 b 1 0 1 0 1 a 0 1 1 1 b 0 0 0 1”

● Transformer with causal mask:

Solvable with finite depth (D >= 2)

● Transformer without causal mask (e.g. a mask-filling model): 

○ Absolute position encoding: general solution with D ~ log T.

○ Relative position encoding: specialized solution with D ~ log T.

○ Alibi position encoding: specialized solution with D ~ T.

“Muon mass = [???] MeV”

T

Ask me ab
out 

their 
circ

uits!



● In an attention layer, any token can attend to any other token based on:

1. their position (absolute or relative) 2. their content

● A token CANNOT attend to another token based on the content of a third token:

○ attend to the tokens
closer than 5 positions away

○ attend to my neighboring tokens
up to a specific other token (here | )

● Domain of study of computer scientists but
mostly in the context of arithmetic and formal language.
[Are Transformers universal approximators, C. Yun et al, Dec 2019]
[Your Transformer May Not be as Powerful as You Expect, S. Luo et al, May 2022]

The structure of attention is the main cause.
Transformers have highly constrained communication protocols.

 0 | 0 1 0 0 0 1 0 0 0 1 | 1 0

    0 | 0 1 0 0 0 1 0 0 0 1 | 1 0



Consequences I
Deserialization is a challenge

● These limitations of transformers imply that the network will be unable to recover the original data 
from the serialized form.

● This means that the network will be unable to perform some matrix operations.

● Providing row/column position code fixes this specific problem but other problems remain. 
(e.g. pooling information from two observations with different resolutions)

a   b   c

d   e   f
“[[a, b, c], [d, e, f]]”



Consequences II:
Real world implications for transformer based models

● Take a 2D material with different phases and dynamic boundaries:

● Can we easily calculate the ratio of + to -
in each phase?

● For quantum hall systems can we accurately calculate 
the number of edge/bulk excitations?

● For fluids, can we calculate statistics within specific regions
(e.g. within vortices, or specific Lyapunov exponent sign).

● These problems are strictly harder than the Select and
count task. 
(i.e. if you can’t solve that efficiently, you can't solve these).

+ + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ + + + + + + - - - - + + +
+ + + + + + + - - + - - + +
+ + + + + + + - - - - - + +
+ + + + + + + - - - - - + +
+ + + - + + + - + - - - + +
+ + + - + - + - - - - + + +
+ + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+ + + - + + + + + + + + + +
+ + + + + + + + + + + + + +
+ + + + + + + + + + + + + +



Conclusions

42



Building a foundation model for physics could be our best shot at addressing the remaining 
unanswered mysteries in our field. But science data is heterogeneous, with many different 
modalities, and that will make building a foundation model challenging.

The way forward is to somehow embed each modality into the same embedding space. 
● The simplest way is converting everything to text, though ultimately we’ll likely want to 

combine this with other modality-specific embedding strategies.

Let’s say we convert everything to text. 
● Handling numbers in a continuous way is a challenge. A numerical encoding like xVal 

could help adapt some of the key structures of LLMs to make them more appropriate for 
scientific analysis.

● Moreover, there are limits to what operations transformers can perform, especially under 
default configurations that have been deemed best for natural language processing. 
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Thanks!
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Some good questions you could ask us...
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“Why not just let ChatGPT use a calculator?”

“How does xVal represent really big/small numbers?”
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The internal representation of x is bounded by layer normalization…
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...but multiple numerical embeddings can be used to capture a wider range of values:
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Using scientific notation, e.g. writing numbers as e.g. 832 → “8 10e2 3 10e1 2 10e0”, 
is somewhat helpful, but the model still isn’t learning the basic rules of arithmetic.

Investigating the Limitations of Transformers with Simple Arithmetic Tasks. arXiv:2102.13019 [cs.CL].  

https://arxiv.org/abs/2102.13019
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Another strategy: 
mapping numbers onto a basis of “prototype numerals”.

NumGPT: Improving Numeracy Ability of Generative Pre-trained Models. arXiv:2109.03137 [cs.CL]. 

Embed the exponent as a vector 
associated with integers between 
-8 and +12 

Embed the mantissa as a sum of 
distances from “prototype numerals” 
distributed uniformly between [-10, 10]:  

https://arxiv.org/abs/2109.03137
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Polymathic AI Collaboration
polymathic-ai.org 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http://polymathic-ai.org


Polymathic AI Collaboration
polymathic-ai.org 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http://polymathic-ai.org

