Prospects of LLMs in
Fundamental Physics



Unanswered questions



What is the nature of Why is the universe so
dark matter/energy? matter-dominated?

\ / Why s the Hi
Why is gravity Aely

o e «—— Unanswered questions — mass so light?

How does gravity operate in \

the quantum regime? : . ,
What's up with neutrino masses?



We don't know yet how to answer these questions...

but we have a ton of interesting data to comb through,
and it looks like AI will be essential to that process.






Foundation models are pre-trained on large and diverse datasets.



Foundation models are (quasi-)generalists.

They can make good predictions out-of-the-box on several unseen tasks,
and they can be fine-tuned for better performance on a variety of other tasks.



Why might we want to build a foundation
model for fundamental physics research?



1. Efficiency:

A foundation model could provide a better starting point than
training from scratch for training new Al models on physics
data, particularly if training data is limited or expensive.



2. Interdisciplinarity:

A foundation model could reveal connections in data collected
from disparate instruments or even sub-disciplines, transcending
the scope of any one particular experiment’s vantage point.



3. Creativity:

A foundation model could foster more interactive, playful,
curiosity-driven experiences with our data, challenging our default
assumptions about how typical analyses should be done and
inviting new, highly creative strategies.



It's (relatively) straightforward to imagine constructing a
foundation model trained on data that can be neatly
combined via a standard input format (e.g. text, 2D images).

But physics data is far more heterogeneous and multi-scale.
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Fundamental physics data takes many forms and requires context.
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We need to find a way to combine all of our inputs into a
single, shared “embedding space” — i.e. a common language
that our foundation model understands.
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We need to find a way to combine all of our inputs into a
single, shared “embedding space” — i.e. a common language
that our foundation model understands.

For a full-scale ScienceGPT, this will likely involve some specialized embedding structures, e.g.:

PaLM-E: An Embodied Multimodal Model

Given <emb> ... <img> Q: How to grasp blue block?

? ViT

Control A: First, grasp yellow block and ...

(Driess et. al., PaLM-E, 2023)
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https://palm-e.github.io/

We need to find a way to combine all of our inputs into a
single, shared “embedding space” — i.e. a common language
that our foundation model understands.

For a full-scale ScienceGPT, this will likely involve some specialized embedding structures, e.g.:

Tokenization 4M multimodal masked pre-training
RGB Depth
. Randomly sample
.' T --| = e s e e e e e e e e e e e e e e e e e e e e e e @ a fixed number of
L [1] [2] 3 = 1[2] s target tokens
ke 0 EE
= == 7 5[5 = B S --

LI T O O

Segmentation Surface normals
b mmm

el T

- | i1 21 i
b i | ek
| TAE
. :

CLIP features

Transformer
decoder

Transformer
encoder

Caption A B[C]

a small conference _, | D ” E ‘ E

room with two

N —

rrrtrtrrrtt rrrrrrttres

3 ans
E‘ light blue wall
IE‘ Bounding boxes

© o N

A
' Randomly sample

[7]

| | o
™

: . Mask tokens (for images) &
xmin-045ymin-0.38 — D E F  \_ _ _ _ _ _ _ ____ a fixed number of et
xmax=0.63 ymax=0.55 = @ input tokens left-shifted tokens (for sequences)

18
(Mizrahi & Bachmann et. al., 4M, 2023)


https://4m.epfl.ch/

We need to find a way to combine all of our inputs into a
single, shared “embedding space” — i.e. a common language
that our foundation model understands.

But for today, let’s imagine we do the simplest version of this: treat all your data as text.

ChatGPT 3.5 v

)

How can | help you today?

Come up with concepts

Write a thank-you note
for a retro-style arcade game

to a guest speaker for my class

Help me debug

alinked list problem

Plan a tour

for architectural photography in Barc...

|Message ChatGPT...
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@ You

What is 3582 x 2911?

Wrong! It’s 10,427,202.

ChatGPT /

3582 multiplied by 2911 equals 10,425,302.
0O ¢

If we repeat this many times, we'll find that it will only give the correct answer around 4% of the time.

Faith and Fate: Limits of Transformers on Compositionality. arXiv:2305.18654 [cs.CL] (2023)
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https://arxiv.org/abs/2305.18654

Large Language Models (LLMs) struggle to understand
what makes numbers different from other kinds of text.
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Existing embeddings can't generalize out-of-distribution...
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[1] Do NLPs Know Numbers? Probing Numeracy in Embeddings. https://aclanthology.org/D19-1534.pdf
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Existing embeddings can't generalize out-of-distribution...
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..and they behave erratically.
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Figure 1: The confidence for GPT answering the questions
related to the weight of an egg. The fluctuated curve reflects
that GPT does not capture the continuous property of num-

bers.

[2] NumGPT: Improving Numeracy Ability of Generative Pre-trained Models. arXiv:2109.03137 [cs.CL].
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One core problem is the need to map every number onto a finite set of “tokens”.
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Dedicated numerical encodings see trade-offs between accuracy, range, and vocabulary size.

Encoding 3.14 —6.02.10% Tokens / coefficient | Size of vocabulary
P10 [+, 3, 1, 4, E-2] [~; 6, 0, 2, E21] 5) 210
P1000 [+, 314, E-2] [-, 602, E21] 3 1100
B1999 [314, E-2] [-602, E21] 2 2000
FP15 [FP314/-2] [FP-602/21] 1 30000

F. Charton. Linear Algebra with Transformers. arXiv:2112.01898 [cs.LG].
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https://arxiv.org/abs/2112.01898

We propose a new numerical encoding scheme that
uses just a single token and renders a language model
end-to-end continuous.
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xVal

A Continuous Number Encoding for LLMs

stat.ML arXiv:2310.02989

Project led by Siavash Golkar, Mariel Pettee, Michael Eickenberg, Alberto Bietti
Accepted contribution at the NeurlPS 2023 Al4Science Workshop

Polymathic
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“Electron mass = 0.511 MeV”

1. Convert to text & extract numerical values:

“Electron mass = [NUM] MeV”

2. Tokenize:
[6] [15@] [38] [1@] [5] [971] [1]

3. Multiply numerical values into each [NUM] embedding:
[0] [158] [38] [1@] [5] [971] [1]

0.511
® 0.511
0.511

Tokenizer Dictionary
n . [1]
[NUM] - [5]
= - [10]
Mass — [38]

Electron — [150]
MeV - [971]
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During inference, we can use a mask ([ ???]) to tell the network where we want to guess a token.

“Muon mass = [??7?] MeV”
[6] [151] [38] [10] [6] [971] [1]

Tokenizer Dictionary
Ifa [NUM] token is predicted, the model also prompts a dedicated number

transformer head to predict its value. ‘o {@}
" L1
Token Number [NUM] . [5]
Head Head [?7?] - [6]
Loglts Number = - [10]
105 .7 Mass — [38]

Electron — [150]
Muon — [151]

[NUM]“—ﬁ‘ k MeV _ [971]

£_J/
“Muon mass = 1085.7 MeV”
29



This encoding strategy has 3 main benefits:

e Continuity

o It embeds key information about how numbers continuously relate to one

another, making its predictions more appropriate for many scientific applications.

e Interpolation
o It makes better out-of-distribution predictions than other numerical encodings.
e Efficiency

o By using just a single token to represent any number, it requires less memory,
compute resources, and training time to achieve strong results.
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When tested on the task of temperature forecasting from a real-world dataset,
xVal achieves the lowest loss with the shortest training time.
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When tested on the task of extracting orbital data from simulated
planetary motion, xVal shows improved out-of-distribution predictions.
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Part 2
Challenges



Challenge I: Inetficiency

Potential Solution: Modality specific coding

® Removing all structure and turning the problem into textual tokens means that the model will have to
learn these structures itself. (Very data hungry)

PaLM-E: An Embodied modal Model
Given ... <img> Q: How to grasp blue block?
ViT

Control A: First, grasp yellow block and ...




Challenge II:

Time for a few rounds of---

Can GPT4 even do that?!



Question 1.

Count the ones (simple version)

% You
0110001a00010b010
How many ones are there between a and b

@ chatGPT

® Success rate is ~70%.

® The task is easy, GPTs (causal autoregressive models) can in—principle solve this efficiently.



Question 1.

Count the ones (simple version)

® Count the number of ones between a and b:

“10101a0111b0001"

® FEasy for transformer with causal mask (and <BOS) token)



Question 2. o
.
Count the ones (select and count task) %\%\;‘i&\ﬁw
X

® Can a transformer based model solve the following problem?

® Count the number of ones between the last a,b pair:

“1011012a010b101012a0111b00017

v

T

“Muon mass = [??7?] MeV”

pu
suggesﬂorw based
: ‘( on LLM lore




The structure of attention is the main cause.

Transformers have highly constrained communication protocols.

® [n an attention layer, any token can attend to any other token based on:

1. their position (absolute or relative) 2. their content

X



Consequences |

Deserialization is a challenge

® These limitations of transformers imply that the network will be unable to recover the original data
from the serialized form.

“I[a, b, c], [d, e, f]]” »

a b c

d e f

® This means that the network will be unable to perform some matrix operations.

® Providing row/column position code fixes this specific problem but other problems remain.
(e.g. pooling information from two observations with different resolutions)



Consequences II:

Real world implications for transformer based models

® Take a 2D material with different phases and dynamic boundaries:

® Can we easily calculate the ratio of + to -
in each phase?




Conclusions



Building a foundation model for physics could be our best shot at addressing the remaining
unanswered mysteries in our field. But science data is heterogeneous, with many different
modalities, and that will make building a foundation model challenging.

The way forward is to somehow embed each modality into the same embedding space.
e The simplest way is converting everything to text, though ultimately we’ll likely want to
combine this with other modality—specific embedding strategies.

Let's say we convert everything to text.

e Handling numbers in a continuous way is a challenge. A numerical encoding like xVal
could help adapt some of the key structures of LLMs to make them more appropriate for
scientific analysis.

e Moreover, there are limits to what operations transformers can perform, especially under
default configurations that have been deemed best for natural language processing.
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Thanks!



Some good questions you could ask us...

“Why not just let ChatGPT use a calculator?”

“How does xVal represent really big/small numbers?”
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The internal representation of x is bounded by layer normalization...

20 A

u-LN(xu + p)
o

—20 1

=50 =25 0.0 2.5 5.0
X

Figure 2: Value of the embedding
of the number z after layer-norm,
projected onto the direction of the
[NUM] embedding vector.
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...but multiple numerical embeddings can be used to capture a wider range of values:

E tanh(z - 10°) - [NUM; ]
1€[—k,k]

1.01 _
1= —1
1=0 (

(=]
ot
)
I
—_

Coefficient of [NUM],
& -
at o

—1.01
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Using scientific notation, e.g. writing numbers as e.g. 832 — “8 10e2 3 10el 2 10e0”,
is somewhat helpful, but the model still isn’t learning the basic rules of arithmetic.

1 /

—a— 10E-BASED “3 10el 2 10e0”
0.8 —&— 10-BASED “3 10 2”
B —a&— WORDS “thirty-two”
§ 0.6 —&— UNDERSCORE “3_2”"
S FIXED-CHARACTER “0 0 3 2”
; 0.4 CHARACTER “3 2”
& 4+ —&— DECIMAL “32”
0.2 \
0 @ ) 8
2 5 10 15 20 25 30

# of digits

Figure 1: Accuracy of different number representations on the addition task.

Investigating the Limitations of Transformers with Simple Arithmetic Tasks. arXiv:2102.13019 [cs.CL].
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https://arxiv.org/abs/2102.13019

Another strategy:
mapping numbers onto a basis of “prototype numerals”.

For a numeral n, we will first transform it into a scientific Embed the exponent as a vector
notation and determine its exponent e(n) € Z and mantissa sz wiih Infegers beiee
f(n) € (—10,10), as shown in Equation 1. -8 and +12

n = 10" x f(n). (1)

Embed the mantissa as a sum of
For example, —123 can be transformed to —1.23 X ) . “ ”
distances from prototype numerals

exponent, denoted as e(—123), is the 2, and its mantissa, distributed uniformly between [-10, 10]:
denoted as f(—123), is —1.23.

o

NE! (f(n)) = exp (_ 1) ~ of ||2>

NumGPT: Improving Numeracy Ability of Generative Pre-trained Models. arXiv:2109.03137 [cs.CL].
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https://arxiv.org/abs/2109.03137

Table 2: Adjusted R? scores calculated between predictions and true values for the different encod-
ings on various arithmetic datasets. (Higher is better; R? = 1 is the theoretical maximum.)

Encoding 3-digit Multiplication  4-digit Multiplication 5-digit Multiplication

P10 0.9989 0.6071 0.9439
P1000 0.9997 0.9783 0.9991
B1999 0.9998 0.9984 0.9997
FP15 0.7119 0.9959 0.9980
XVAL 0.9986 0.9975 0.9958

Table 3: Arithmetic evaluation task of random binary trees combining different numbers of operands
with addition, subtraction, and multiplication. R? measured between true expression value and
transformer prediction (scores in parentheses include outliers). P10 evaluated on the 4-operands
dataset did not converge within our allocated compute time.

Encoding 2 operands 3 operands 4 operands

P10 0.998 0.996 N/A
P1000 0.991 0.990 0.991
FP15 0.993 0.981 0.935
X VAL 0.99998 0.99994 0.99998

50



Polymathic AI Collaboration

polymathic-ai.org

Polymathic

Advancing Science through Multi-Disciplinary Al

BERKELEY
N

UNIVERSITY OF SCHMIDT FUTURES PRINCETON H

CAMBRIDGE UNIVERSITY

[ ]

SIMONS

oooooooooo



http://polymathic-ai.org

Polymathic Al Collaboration
polymathic-ai.org

"

A\A

ALBERTO KYUNGHYUN MILES MICHAEL
BIETTI CHO CRANMER EICKENBERG

SIAVASH KEIYA
GOLKAR HIRASHIMA

SHIRLEY GERAUD
HO KRAWEZIK

FRANCOIS NICK MICHAEL RUBEN
LANUSSE LOURIE MCCABE OHANA

LIAM MARIEL BRUNO LEOPOLDO TIBERIU
PARKER PETTEE REGALDO SARRA TESILEANU

52


http://polymathic-ai.org

