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Efficient Matrix Multiplication 
Algorithms for Quantized LLMs
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About Me
● Will soon start a PhD in experimental particle 

physics at KIT
● Additional bachelor’s degree in informatics
● Background in computing and statistics
● One of the llama.cpp core developers 

(mostly CUDA)
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CUDA
● NVIDIA’s first-party platform for general-

purpose computing on GPUs
● Massive parallelism
● Suitable for artificial neural 

networks, e.g. transformers
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llama.cpp
● Open-source C/C++

program for LLM 
inference

● Wide support across hardware and OSs
● Quantization support for 2-8.5 bits per weight 

(1.5 BPW is WIP)
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Weight Quantization
● Original LLaMA weights 

are FP16
● Can be quantized to 2-8 

bit ints with some quality 
loss

● Simple scheme: 
round to nearest
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Weight Quantization
● State-of-the-art 

models don’t fit 
on single GPU 
at FP16

● But quantized 
models do
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Simple Matrix Multiplication
● Weights as blocks of ints     

    with per-block scale
● FP16: 
● Can use FP16 GEMM
● Decoding only half 

as fast as FP16
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Matrix Shape Matters
● 2x square matrix:             data,              compute
● Square matrix + vector:             data,

             compute
● Encoding: batch size >> 1, compute bound
● Decoding: batch size 1, I/O bound
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Fused Matrix Multiplication
● Quantize hidden 

state on-the-fly
● Dot product of two 

quantized blocks:

float
int8
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Fused Matrix Multiplication
● Can do most operations as int8
● Faster than float
● Hardware support for 

int8 intrinsics since 
Pascal
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Fused Matrix Multiplication
● Avoid dequantizing to FP16

to reduce I/O
● Dequantize + FP 16 GEMM: 

8.5 bits read + 16 bits write 
+ 16 bits read per weight

● Directly use quantized: 
8.5 bits read per weight
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Tensor Cores Are Fast
● int8 intrinsics only ~60% 

throughput of FP16 GEMM 
at 1024 batch size

● Reason: FP16 tensor cores
● But: int8 tensor cores 

2x faster than FP16
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Tensor Core Usage Patterns
● Tensor cores are fast 

but restrictive
● Fast: Initialize, load data, 

matrix multiplication
● Slow: Write back results
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Problems With Quantized Blocks
● Slow writeback for each block
● Small blocks: bad performance
● Big blocks: bad precision
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Tensor Core Details
● CUDA organizes threads as “warps” of size 32
● Each thread holds 256/32 = 8 tensor core 

accumulator values
● No guarantees for which 8 values thread holds
● But can apply scalar operations
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llama.cpp int8 Tensor Cores
● Define additional scales for 

tensor core fragments
● Better precision for large blocks
● Single float scale per row/column
● Only need to write back results 

once
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Llama.cpp int8 Tensor Cores
● Llama.cpp int8 15% 

faster than cuBLAS 
FP16 GEMM

● 6-13% end-to-end
● Negligible precision 

loss
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Precision/VRAM
● Precision with int8 

slightly worse
● But memory usage 

also slightly lower
● Change to top token 

probabilities < 1%
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Further Work
● Only ~23% int8 tensor core utilization

=> More performance optimization
● Fused operations (e.g. FlashAttention, mixture 

of experts)
● Implement backwards pass (or training at all)
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Live Demonstration (Hopefully)
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Thank you for 
your attention!
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Appendix: Memory Scaling
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Kullback-Leibler Divergence
● Measures difference between probability 

distributions     and 
● Definition:
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Appendix: CPU+GPU Scaling



 Johannes Gäßler, 21.02.24 25

Appendix: CPU+GPU Scaling
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