
 Johannes Gäßler, 21.02.24 1

Efficient Matrix Multiplication
Algorithms for Quantized LLMs

 Johannes Gäßler, 21.02.24 2

About Me
● Will soon start a PhD in experimental particle

physics at KIT
● Additional bachelor’s degree in informatics
● Background in computing and statistics
● One of the llama.cpp core developers

(mostly CUDA)

 Johannes Gäßler, 21.02.24 3

CUDA
● NVIDIA’s first-party platform for general-

purpose computing on GPUs
● Massive parallelism
● Suitable for artificial neural

networks, e.g. transformers

 Johannes Gäßler, 21.02.24 4

llama.cpp
● Open-source C/C++

program for LLM
inference

● Wide support across hardware and OSs
● Quantization support for 2-8.5 bits per weight

(1.5 BPW is WIP)

 Johannes Gäßler, 21.02.24 5

Weight Quantization
● Original LLaMA weights

are FP16
● Can be quantized to 2-8

bit ints with some quality
loss

● Simple scheme:
round to nearest

 Johannes Gäßler, 21.02.24 6

Weight Quantization
● State-of-the-art

models don’t fit
on single GPU
at FP16

● But quantized
models do

 Johannes Gäßler, 21.02.24 7

Simple Matrix Multiplication
● Weights as blocks of ints

 with per-block scale
● FP16:
● Can use FP16 GEMM
● Decoding only half

as fast as FP16

 Johannes Gäßler, 21.02.24 8

Matrix Shape Matters
● 2x square matrix: data, compute
● Square matrix + vector: data,

 compute
● Encoding: batch size >> 1, compute bound
● Decoding: batch size 1, I/O bound

 Johannes Gäßler, 21.02.24 9

Fused Matrix Multiplication
● Quantize hidden

state on-the-fly
● Dot product of two

quantized blocks:

float
int8

 Johannes Gäßler, 21.02.24 10

Fused Matrix Multiplication
● Can do most operations as int8
● Faster than float
● Hardware support for

int8 intrinsics since
Pascal

 Johannes Gäßler, 21.02.24 11

Fused Matrix Multiplication
● Avoid dequantizing to FP16

to reduce I/O
● Dequantize + FP 16 GEMM:

8.5 bits read + 16 bits write
+ 16 bits read per weight

● Directly use quantized:
8.5 bits read per weight

 Johannes Gäßler, 21.02.24 12

Tensor Cores Are Fast
● int8 intrinsics only ~60%

throughput of FP16 GEMM
at 1024 batch size

● Reason: FP16 tensor cores
● But: int8 tensor cores

2x faster than FP16

 Johannes Gäßler, 21.02.24 13

Tensor Core Usage Patterns
● Tensor cores are fast

but restrictive
● Fast: Initialize, load data,

matrix multiplication
● Slow: Write back results

 Johannes Gäßler, 21.02.24 14

Problems With Quantized Blocks
● Slow writeback for each block
● Small blocks: bad performance
● Big blocks: bad precision

 Johannes Gäßler, 21.02.24 15

Tensor Core Details
● CUDA organizes threads as “warps” of size 32
● Each thread holds 256/32 = 8 tensor core

accumulator values
● No guarantees for which 8 values thread holds
● But can apply scalar operations

 Johannes Gäßler, 21.02.24 16

llama.cpp int8 Tensor Cores
● Define additional scales for

tensor core fragments
● Better precision for large blocks
● Single float scale per row/column
● Only need to write back results

once

 Johannes Gäßler, 21.02.24 17

Llama.cpp int8 Tensor Cores
● Llama.cpp int8 15%

faster than cuBLAS
FP16 GEMM

● 6-13% end-to-end
● Negligible precision

loss

 Johannes Gäßler, 21.02.24 18

Precision/VRAM
● Precision with int8

slightly worse
● But memory usage

also slightly lower
● Change to top token

probabilities < 1%

 Johannes Gäßler, 21.02.24 19

Further Work
● Only ~23% int8 tensor core utilization

=> More performance optimization
● Fused operations (e.g. FlashAttention, mixture

of experts)
● Implement backwards pass (or training at all)

 Johannes Gäßler, 21.02.24 20

Live Demonstration (Hopefully)

 Johannes Gäßler, 21.02.24 21

Thank you for
your attention!

 Johannes Gäßler, 21.02.24 22

Appendix: Memory Scaling

 Johannes Gäßler, 21.02.24 23

Kullback-Leibler Divergence
● Measures difference between probability

distributions and
● Definition:

 Johannes Gäßler, 21.02.24 24

Appendix: CPU+GPU Scaling

 Johannes Gäßler, 21.02.24 25

Appendix: CPU+GPU Scaling

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

