

# Imaging nanocube hollowing in solution

with in situ X-ray ptychography

Lukas Grote

Research groups of Prof. Koziej and Prof. Schroer University of Hamburg and DESY

03.05.2023







# Understanding size and shape evolution

### Humanity faces many global challenges.

Sustainable technologies to address challenges require:

- novel materials with tailored functions
- sustainable processes

Sophisticated analytics needed:

- understand structure and function on all relevant length and time scales from atomic to macroscopic dimensions
- knowledge-based, rational design of materials, drugs, and processes

New paradigm: **observe**  $\rightarrow$  **design**  $\rightarrow$  **control** 





# **Complex nanomaterial formation**





hollow Cu nanocubes

200 nm

Cu<sub>2</sub>O@Au nanocages

How do complex nanomaterials form in solution?

### In situ X-ray microscopy enables direct visual observations!

- understand size and shape evolution
- unravel non-classical growth processes



S. S. Mofarah et al., J. Mater. Chem. A 8, 9 (2020)

# Multi-slicing enables X-ray ptychography in solution





Multi-slice ptychography

→ follow growth in extended chemical reactor

L. Grote et al. Nature Communications 13, 4971 (2022); M. Kahnt et al. Scientific Reports 11, 1500 (2021)

Separate high-resolution imaging of two reactor windows:



in-plane size
thickness estimation

quantitative phase shift:
Follow particle in 3D!
→ thickness evolution



# Void formation upon reduction to Cu



X-ray ptychographic phase images:



FIB-SEM:





Strong binding between particles and substrate.

- → mechanism: surface-protected conversion
- → volume shrinkage compensated by void formation

L. Grote et al. Nature Communications 13, 4971 (2022)

Lukas Grote – 03.05.2023

# Multimodal imaging shows composition and crystallinity





### Simultaneous scanning WAXS and ptychography.

- → crystallinity of particles
- → estimate lattice orientation of single nanocube in situ
- → composition of multi-material nanostructure

L. Grote et al. Scientific Reports 13, 318 (2023)

Crystallinity and lattice orientation:



## Nanocube has (100) facets.



Composition of multi-material:



Dissolution of particle interior occurs homogeneously.



# Acknowledgements



#### **University of Hamburg**

Prof. D. Koziej, C. A. Zito, S.-A. Hussak, L. Albers, K. Stachnik, M. Rebber, S. Y. Harouna-Mayer, F. Mancini, I. Fernandez-Cuesta, O. Vasylieva

#### DESY

Prof. C. Schroer, M. Seyrich, M. Kahnt, F. Wittwer, D. Brückner, M. Lyubomirskiy, R. Döhrmann, M. Landmann

#### Funding:

**European Research Council** project LINCHPIN (grant no. 818941)

#### **Bundesministerium für Bildung und Forschung (BMBF)** Röntgen-Ångström-Cluster project XStereoVision (grant no. 05K20GUA)

**CUI: Advanced Imaging of Matter** EXC 2056 - project ID 390715994





# The future is bright for materials science..

in-solution X-ray ptychography

→ visual proof of shape evolution

multimodal ptychography and WAXS

→ crystallinity and composition

Now we can: observe  $\rightarrow$  design  $\rightarrow$  control!

### Future plans:

4th generation synchrotron sources (PETRA IV)

→ 3D imaging with increased resolution

single-pulse imaging at XFEL

→ image dispersed nanoparticles

### **Observe materials in complex environments:**

- → battery electrodes in electrolytes
- → catalysts in photochemical devices
- → functionalized nanoparticles in cells

### Cu<sub>2</sub>O nanocube hollowing



### 3D imaging at PETRA IV



https://www.desy.de/news/

### single-pulse imaging at XFEL



https://www.xfel.eu/news \_and\_events/news