

Low-Latency Track Triggering in High-Energy Physics

Dr.-Ing. Luis Ardila-Perez

HL-LHC CMS Tracker Upgrade

High occupancy \rightarrow New silicon detector

HL-LHC CMS Tracker Upgrade

High occupancy \rightarrow New silicon detector

Only hit pairs with p_T > 2 GeV ("stubs") are forwarded off-detector

Average 15 000 stubs every 25 ns stub bandwidth ~50 Tb/s

HL-LHC CMS Tracker Upgrade

High occupancy \rightarrow New silicon detector

 Only hit pairs with p_T > 2 GeV ("stubs") are forwarded off-detector

- Average 15 000 stubs every 25 ns stub bandwidth ~50 Tb/s
- Increased data rate → New read-out electronics system
 - Capable of **reconstructing tracks** at the collision rate
 - With a total latency of **4 μs**

Track Finder Approach - Algorithms

DTC reads the detector modules and performs time-division multiplexing

TF reconstructs the tracks for one event

Track Finding Algorithm

Track Finding Algorithm

Contributions to the Track Finder Algorithm

Geometrical Processor

- Detector division in finer sub-sectors in η and ϕ
- Optimized for similar data rate per sector
- Latency reduced by a factor of 2 (58 ns) compared to other work
- **Resource saving** of 25 % less DSPs & 30 % less FPGA area

Contributions to the Track Finder Algorithm

Geometrical Processor

- Detector division in finer sub-sectors in η and ϕ
- Optimized for similar data rate per sector
- Latency reduced by a factor of 2 (58 ns) compared to other work
- **Resource saving** of 25 % less DSPs & 30 % less FPGA area

Duplicate Removal

- It uses only 1 % of the resources used for the pair-wise comparison approach
- Contributes to the latency with only four clock cycles ~17 ns
- Remove duplicates without losing efficiency

Track Finder Results

Average track finding efficiency > 95 % (for tracks > 3 GeV)

Track Finder Demonstrator Latency

< 4 µs requirement fulfilled!</p>

Tracker Finder Approach - Hardware

Detector, Trigger & Control Boards **Track Finder** Boards

'Serenity' ATCA Board

- Board compatible with several high-end FPGAs (Xilinx VirtexUS+)
- Capable of handling up to 3.1 Tb/s of data bandwidth
- 124 high-speed optical channels
 @ up to 25 Gb/s
- Excellent optical performance 1E-12 Bit Error Rate (BER)
- Management mezzanine based on a heterogeneous computing device (Xilinx ZynqUS+)

Conclusions

- Demonstrated that reconstruction of tracks under the tight latency requirements of the CMS L1-trigger system is possible
- The reconstruction algorithm was fully implemented in hardware (FPGAs)
- Optimizations of such algorithms were fundamental for the overall scaling up of the system
- The 'Serenity' ATCA board has an enormous processing capability which greatly exceeds the requirements
- Serenity' is currently foreseen to be used at CMS in several sub-detector systems: Tracker, HGCal, L1-Trigger, MTD, & BRIL

Conclusions

- Demonstrated that reconstruction of tracks under the tight latency requirements of the CMS L1-trigger system is possible
- The reconstruction algorithm was fully implemented in hardware (FPGAs)
- Optimizations of such algorithms were fundamental for the overall scaling up of the system
- The 'Serenity' ATCA board has an enormous processing capability which greatly exceeds the requirements
- Serenity' is currently foreseen to be used at CMS in several sub-detector systems: Tracker, HGCal, L1-Trigger, MTD, & BRIL

Track Finder Results

- Robustness of the system over module failures
- Efficiency can be recovered by reducing the number of layers required to form tracks on the affected region

Back-End Electronics System

L1 Trigger Accept

- Must handle the stub throughput ~50 Tb/s / a lot of information
- Must be capable of reconstructing tracks at the collision rate / possible?
- Total allowed latency for (DTC + Track Finder) is 4 μs / fast

Geometrical Processor (GP)

- Detector division in finer subsectors in η and ϕ
- Shaded area duplicates data across neighboring sectors
- Optimized for similar data rate per sector
- "Bend filter" reduces output data rate of next stage (HT) by a factor of 4
- Latency reduced by a factor of 2 (58 ns) compared to other work
- Resource saving of 25 % less DSPs & 30 % less FPGA area (V7-690)

Duplicate Tracks Formation

Hough Transform

- Every cell in the HT is independent from the others
- A "pair-wise" comparison of tracks in search for stubs in common was developed but not optimal

Kalman Filter

- Able to remove fake stubs and refine the projection
- Not able to remove duplicated tracks
- ~50 % output tracks are duplicates

Duplicate Removal

- Looks only at a single track
- It uses only 1 % of the resources used for the pair-wise comparison approach (V7-690)
- Contributes to the latency with only four clock cycles ~17 ns
- Remove duplicates without losing efficiency

Reconstruction Algorithms

