

Contribution ID: 26

Type: Poster

## **Sphaleron Rate from Lattice Gauge Theory**

The "Sphaleron Rate" (imaginary linear-in-frequency part of the topological density retarded Green's function) determines the real-time relaxation rate of axial quark number for light quarks in a hot medium, and is relevant in heavy-ion collisions and electroweak baryogenesis. We recently showed how it can be determined in pureglue QCD via standard Euclidean simulations, via a novel saddlepoint method. We extend this work to find the sphaleron rate for (2+1)-flavor QCD with  $N_{\tau} = 8 - 16$  and HISQ action at almost physical pion masses in the temperature range 0.2 - 3 GeV or 1.2 - 18 times the crossover temperature  $T_{pc}$ .

Similar to the pure gauge case, the QCD result is well described across the range of 1.6 - 8 times  $T_{pc}$  as  $\Gamma_s \simeq 20(\alpha_s T)^4$ , where  $\alpha_s$  is the MSbar coupling at  $\overline{\mu} = 2\pi T$ , determined using the gradient-flow technique.

**Primary authors:** Prof. MOORE, Guy (TU Darmstadt); WEBER, Johannes Heinrich (Humboldt University of Berlin); Mr BARROSO MANCHA, Marc (TU Darmstadt)

Presenter: WEBER, Johannes Heinrich (Humboldt University of Berlin)