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We can generate configurations of increasing lattice size without
critical slowing down
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Spin blocking transformation with a rescaling factor of b=2 and the majority rule
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Real space renormalization group

The standard (Monte Carlo) renormalization group is a powerful technique to study
phase transitions:

1) Finite size effects are almost eliminated->Precision measurements can be
obtained on smaller lattice sizes.

2) Locating the critical point can be achieved self-consistently (and on smaller
lattices).

However, the standard renormalization group, which iteratively eliminates degrees

of freedom, can only be applied for a finite number of steps before the degrees of

freedom vanish.
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Inverse renormalization group

Can we devise an inverse renormalization group approach that

i) retains all of the benefits of the standard RG, i.e. partial elimination
of finite size effects,
i) works for systems with continuous degrees of freedom,
iii) produces the correct fixed point structure and gives rise to inverse
flows in parameter space, and
iv) can be applied in principle for an arbitrary number of steps, while

evading the critical slowing down effect?

Inverse Monte Carlo Renormalization Group Transformations for Critical Phenomena, D. Ron, R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002)
Inverse renormalization group in quantum field theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, arXiv:2107.00466
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Inverse renormalization group

But how to devise an inverse transformation?
New degrees of freedom must be introduced within the system
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Inverse renormalization group

Inversion of a majority rule in the Ising model

Possible rescaled degrees of freedom
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For the inverse renormalization group in the Ising model, see:

Original degree of freedom
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Inverse Monte Carlo Renormalization Group Transformations for Critical Phenomena, D. Ron, R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002)
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Inverse renormalization group

Inversion of a summation in the @* model

Original degree of freedom

0.40

Possible rescaled degrees of freedom

0.01 | 0.36 -421.1 | 90.1

0.02 | 0.01 0.5 | 330.9

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Inversion of a summation in the @* model

Original degree of freedom

0.40

Possible rescaled degrees of freedom

0.01 | 0.36 -421.1 | 901

0.02 | 0.01 0.5 | 330.9

Too complicated!

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)



Inverse renormalization group

The main idea:
We can learn a set of transformations, in the form of transposed
convolutions, that can approximate the inversion of a standard
renormalization group transformation.

Compare

FIG. 3. Illustration of the optimization approach. Trans-
posed convolutions (TC) are applied on configurations pro-
duced with the renormalization group (RG) to construct a
set of configuration which is compared with the original.
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Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group
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Inverse Renormalization Group in Quantum Field Theory, D.

Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

The benefit:
We can apply this set of inverse transformations iteratively to
arbitrarily increase the size of the system, evading the critical

slowing down effect.

L, =bLog

L; =bU=9L,
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Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

IRG

IRG

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

The set of transformations can be applied iteratively to arbitrarily increase the lattice size:
Ly =bU=9L, j>i>0,and Lo = L

However the increase in the lattice size will induce an analogous increase in the correlation
length of the system:

¢ = bl

What are the implications?

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Standard renormalization group

Correlation
length
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Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Correlation
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Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

At the critical point the correlation length diverges, it becomes infinite, and
intensive observable quantities O,0” of original and renormalized systems
become equal.

0 (K)=0(K)
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Inverse renormalization group

First, we verify that the standard MC renormalization group method works in the ¢*

theory:
0.64 T T T
L=16 |
0.62 e g
A 06 F — = .
—_— \
E 058 =
V' 056 F E
0.54 R
0.52 L ! !
0.96 0.955 0.95 -0.945 0.94
2

Then we invert the standard transformation that we verified as being successful.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Now, we start from a lattice size L =32 in each dimension
and apply the inverse transformations to obtain systems
of lattice sizes L,=64, L =128, L,=256, L,=512.

S Ax“%’

L1 =0bLg

L = bY—YL;

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)



Inverse renormalization group
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Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Can we now use the inverse renormalization group approach to calculate critical
exponents?

The relations that govern the divergence of the magnetization for an original (i) and
a rescaled (j) system are

m; ~ |t;|P m; ~ [t;|P
They can be equivalently expressed in terms of the correlation length as
77?/2' _ él_ﬁ/l/ 7nj ~ 57—[3/1/

where v is the correlation length exponent

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

By dividing the magnetizations (or magnetic susceptibilities), taking the natural
logarithm, and applying L'Hépital's rule, we obtain

am; a5 dx; dx;
B _ _ln |k, _ln am | k. . In B | K. _ In e L
v In & (j—i)lnb" v In & (j —i)Ind’

We can use the expressions above to calculate the critical exponents without ever
experiencing a critical slowing down effect.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

TABLE I. Values of the critical exponents + /v and 3/v. The original system has lattice size L = 32 in each dimension

and its action has coupling constants p3 = —0.9515, Ay = 0.7, k. = 1. The rescaled systems are obtained through inverse

renormalization group transformations.

L‘,/L‘J| 32/64 | 32/128 | 32/256 | 32/512 | 64/128 | 64,/256 | 64/512 | 128f256| l'28/512| 256/512
y/v 1.735(5) 1.738(5) 1.741(5) 1.742(5) 1.742(5 1.744(5) 1.744(5 1.745(5) 1.745(5) 1.746(5
B/v 0.132(2)| 0.130(2) 0.128(2)| 0.128(2)| 0.128(2)| 0.127(2) 0.127(2)| 0.126(2)] 0.126(2) 0.126(2)

TABLE II. Values of the critical exponents /v and 8/v. The original system has lattice size L = 8 in each dimension

and its action has coupling constants 3 = —1.2723, Az = 1, k. = 1. The rescaled systems are obtained through inverse

renormalization group transformations.

Li/L; 8/16 | 8/32 8/64 | 8/128 | 8/256 | 8/512 | 16/32 | 16/64 | 16/128 | 16/256 | 16/512
y/v 1.694(6)| 1. 708(6 L717(6) 1.723(6)| 1.727(6)| 1.730(6)| 1. 721(6) 1.728(6)| 1.732(6)| 1.735(6)| 1.737(6)
Bfv | 0.154(2)| 0.147(2)( 0.142(2)| 0.139(2)| 0.137(2)| 0.135(2)| 0.140(2)| 0.136(2)| 0.134(2)| 0.132(2)( 0.131(2)
Li/L, 32/64 | ’12/128 |  32/256 | 32/512| 64/128 | 64/256 | m/ 12 | 128/256] 128/512] 256/512
y/v 1.735(6) T38(6) 1.740(6) 1.740(6) 1.741(6) 1.742(6) 1.7 1.743(6) 1.743(7) 1.743(7)
Bfv 0.133(2) 0 1‘31(2) 0.130(2)| 0.129(2) 0.129(2)| 0.129(2) 0.128(‘2) 0.128(2) 0.127(2)

Ising universality class: y/v=1.75, B/v=0.125.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini, Phys. Rev. Lett. 128, 081603 (2022)



Inverse renormalization group

Could we ever use the inverse renormalization group to
surpass supercomputers?
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Inverse renormalization group

Paramagnetic phase

3D Edwards Anderson model

Spin Glass phase
->00

System freezes to a
configuration

40



Inverse renormalization group

3D Edwards Anderson model

The problem is computationally hard:

i) Metropolis algorithm does not even thermalize in sufficient time as we approach the spin glass phase.
ii) Cluster algorithms are not efficient in 3D. We need to resort to parallel tempering/replica exchange

techniques in >=3D.

iii) System has probabilistic coupling constants, and we need to simulate a large number of realizations
of disorder to calculate expectation values.
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Inverse renormalization group

Janus Collaboration:

Has access to special-purpose supercomputers which are
constructed exclusively to study spin glasses.

Has thermalized lattices up to L=40°

Critical parameters of the three-dimensional Ising spin glass

Janus Collaboration: M. Baity-Jesi, R. A. Bafios, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A. Gordillo-Guerrero, D. Ifiiguez, A. Maiorano, F. Mantovani, E. Marinarl, V. Martin-Mayor, J. Monforte-
Garcia, A. Mufioz Sudupe, D. Navarro, G. Parisl, S. Perez-Gaviro, M. Pivanti, F. Riccl-Tersenghi, J. J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancon, R. Tripiccione, D. Yllanes

We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated
computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, \nu = 2.562(42) for the thermal exponent, \eta = -0.3900(36) for the anomalous
dimension and \omega = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield \alpha = -5.69(13), \beta = 0.782(10) and \gamma = 6.13(11). We also compute several
universal quantities at Tc.
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Inverse renormalization group
Inverse renormalization group:

We have constructed configurations for lattices up to L=1283
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Inverse renormalization group

We have answered these questions:

=> How to generate configurations of systems with larger lattice size without critical slowing
down effect.
How inverse renormalization group flows emerge.

vl

How to calculate multiple critical exponents with the inverse renormalization group.
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=> We have discussed applications of the inverse renormalization group to computationally hard
problems.
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