TB 2022: Geant4 simulations & Data Comparison

Veta Ghenescu, Alina Neagu, Mihai Potlog Institute of Space Science, Bucharest

TB 2022 Simulations Step by Step

geometry

- complete implementation of all type of sensors Anton1, Yan1, BeamCal, C72, C74, C75
- re-numbered the pads to correspond to channels from real sensors
- macro with commands for easily geometry change

physics list

- check results with another physics list suggested by Geant4 QGSP_BERT,
 QGSP_BIC and those with electromagnetic options (_EMV, _EMX, EMZ..)
- start / stop hadronic processes to investigate their influence on results
- implement specific physics list one developed by Alina a few years ago for FCal

analysis

- evaluate each pad energy deposition
- fit the energy deposition histograms to get the MPV
- evaluate MPV for different setup configurations
- compare simulation results with data from test beam
- find the longitudinal shower distribution for different configurations (e.g. 1 to 15 W plates in front of sensor)

TB 2022: Geometry implementation in Geant4

2 case scenario: Anton1 (GaAs) & C74 (Si) sensors

- Simplest geometry
 - Sensor placed in 1st DUT slot
 - 6 telescope planes
 - all distances implemented as in test beam (thanks, Shan!)

goal: check energy deposition

- get energy deposited in each pad of sensor
- reconstruct hit map

■ Ga-As sensor – Anton1

- Rectangular shape
- X dimension: $\mathcal{L} = 4.7 \text{mm} \cdot 15 \text{ (pad)} + 0.3 \text{mm} \cdot 14 \text{ (gap)} = 70.5 \text{mm} + 4.2 \text{mm} = 74.7 \text{ mm}$
- Y dimension: ℓ = 4,7mm*10(pad) +0,3mm*9(gap) = 47mm + 2,7mm = 49,7 mm
- Thickness 500 μm

■ Si sensor – C74

- Squared shape: 18 cm x 18 cm
- Separated in 1024 pads
- Thickness: 320 μm

Physics list used: FTFP_BERT & FTFP_BIC

Simulations: Number of e-h pairs created in GaAs sensor

Olga Nogorodova's Thesis:

- Energy deposition in GaAs sensor
- 500 μm thickness
- 90Sr, 2, 4 and 4.5 GeV mono-energetic e-
- triggered by 3 scintillators

Setup	Dep. En.	e-h pairs per μ m
^{90}Sr	$0.3512~\mathrm{MeV}$	163,4
2 GeV	$0.3455~\mathrm{MeV}$	160,7 (2.0 GeV)
4 GeV	$0.3513~\mathrm{MeV}$	163,4 (4.0 GeV)
$4.5 \mathrm{GeV}$	$0.3526~\mathrm{MeV}$	164,0 (4.5 GeV)

goal: check number of e-h pairs created

Entries

Mean

Std Dev

 χ^2 / ndf

MPV

Sigma

- Thickness: 500 μm
- E_e = 2 GeV
- $E_i = 4.3 \text{ eV}$

137.95 e-h pairs per µm

htemp 764218 0.3986 ■ GaAs sensor – Anton1

0.1458

Edep. MeV

9476 / 169

 0.3285 ± 0.0001

 0.02403 ± 0.00003

Constant 2.018e+05 ± 3.630e+02

- Thickness: 550 μm
- 5 GeV mono-energetic e-
- Triggered by 3 scintillators
- Thickness: 550 μm
- E e- = 5 GeV
- Ei = 4.3 eV

142.21 e-h pairs per µm

Physics list used: QGSP_BERT_EMZ

35000

30000

25000

20000

15000

10000

5000

Simulations: Number of e-h pairs created in Si sensor

Energy deposition in Si sensor

- 320 μm thickness
- 5 GeV mono-energetic e-
- triggered by 3 scintillators

- Thickness: 320 μm
- E_e = 5 GeV
- $E_i = 3.62 \text{ eV}$

78.45 e-h pairs per μm

■ Energy deposition in Si sensor

- Thickness: 500 μm
- 3 GeV mono-energetic e-
- Triggered by 3 scintillators

Physics list used: QGSP_BERT_EMZ

- Thickness: 500 μm
- $\mathbf{E}_{e} = 3 \, \text{GeV}$
- E_i = 3.62 eV

80.88 e-h pairs per µm

Simulations GaAs: Anton1 sensor

Hit map

Hits registered position

- Centered on pads 64, 65, 74, 75, 84, 85
- Converted to channel number from sensor

Simulation setup

- Primary particle: electron
- Primary particle energy: 5GeV
- Source type:
 - squared,
 - 12 mm x 12 mm
- Number of simulated events: 1 000 000

2022 TestBeam: GaAs calibration

- Channel by channel gain calibration can be done by looking on the response of sensor directly exposed on MIPs deposition in Si sensor
- for each pad a (Landau & Gauss) function was fitted to energy spectrum
- The analysis showed very small deviations from channel to channel

Data from run4484 – Anton1 sensor

- Beam on pads 42, 44, 62, 64
- Converted to channel number from sensor

Analysis conditions

- Kept all timeplanes
- Cut on amplitude < 900
- dead channels masked
- langaus fitted in range [12-64] ADC

2022 TestBeam: GaAs calibration

- for each pad a (Landau & Gauss) function was fitted to energy spectrum
- The analysis showed very small deviations from channel to channel

Analysis conditions

- Kept all timeplanes
- Cut on amplitude < 900
- dead channels masked
- langaus fitted in range [12-64] ADC

Data from run4484 – Anton1 sensor

- Beam on pads 42, 44, 62, 64
- MVP = 20.26 ± 0.68 [ADC]

2022 TestBeam: Si calibration

- Channel by channel gain calibration can be done by looking on the response f sensor directly exposed on MIPs deposition in Si sensor
- for each pad a (Landau & Gauss) function was fitted to energy spectrum
- The analysis showed very small deviations from channel to channel

Data from run4436 - C75 sensor

Beam on pads 49, 51, 59, 61

Analysis conditions

- Kept all timeplanes
- Cut on amplitude < 900
- dead channels masked
- langaus fitted in range [12-64] ADC

2022 TestBeam: Si calibration

- for each pad a (Landau & Gauss) function was fitted to energy spectrum
- The analysis showed very small deviations from channel to channel

Analysis conditions

- Kept all timeplanes
- Cut on amplitude < 900
- dead channels masked
- langaus fitted in range [12-64] ADC

Data from run4436 – Anton1 sensor

- Beam on pads 49, 51, 59, 61
- $MVP = 20.79 \pm 1.07 [ADC]$

TB 2022: Simulations vs Data

2 case scenario: GaAs sensor

• 1 MeV = 61.67 ADC

goal: compare simulations with data

TB 2022: Simulations vs Data

2 case scenario: Si sensor

• 1 MeV = 228.79 ADC

goal: compare simulations with data

TB 2022: Simulations vs Data

2 case scenario: Si sensor

• 1 MeV = 228.79 ADC

goal: compare simulations with data

TB 2022: Configurations

Geometry implementation in Geant4 - 10 experimental setups - 38 different configurations

■ Ga-As sensor – Anton1

1 exp. setups without any W plates

Energies: 5 GeV c

■ Ga-As sensor – Yanı

1 exp. setup without W plates

Energies: 5 GeV

1 exp. setup with 5 W plates

Energies: 1 GeV, 3 GeV, 5 GeV

1 exp. setups with decreased no of plates 15 -> 1 W

Energies: 5 GeV

■ Ga-As sensor – BeamCal

1 exp. setups without any W plates

Energies: 5 GeV

■ Si sensor – C72

1 exp. setups without any W plates

Energies: 5 GeV

■ Si sensor – C74

1 exp. setups without any W plates

Energies: 5 GeV

1 exp. setup with 5 W plates

Energies: 1 GeV, 3 GeV, 5 GeV

1 exp. setups with decreased no of plates 15 -> 1 W

Energies: 5 GeV

■ Si sensor – C72

1 exp. setups without any W plates

Energies: 5 GeV