Selected results from Moriond

Neutrino physics, flavour physics (quark sector), dark matter (direct detection)

Henconion Je monion

Krisztian Peters DESY, 17.4.2023 ~100 talks and several hundred experimental results

A very limited selection for this discussion

Many slides borrowed from Marumi Kado (thanks!)

Accelerator Neutrinos

810 km/GeV - E 2 GeV - 0.8° off-axis

Improved sensitivity to mass ordering!

Parameterisation of neutrino mixing

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix:

- 3 mixing angles: θ_{12} , θ_{23} , θ_{13} SINCE 2012: all measured
- 1 Dirac-phase (CP violating): δ

atmospheric neutrinos,

neutrino beams

$$\begin{bmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$
Really maximal?
$$\Theta_{23} \approx 45^{\circ} \qquad \Theta_{13} \approx 9^{\circ}, \delta? \qquad \Theta_{12} \approx 33^{\circ}$$

reactor neutrinos,

neutrino beams

solar neutrinos, reactor neutrinos

- Flavour eigenstates; ν_e , ν_μ and ν_τ (interact)
- Mass eigenstates; ν_1 , ν_2 and ν_3 (propagate)

Long-baseline accelerator experiments $L/E \sim 10^{2-3}$ km/GeV are sensitive to

```
NO/IO, \Theta_{23} and \delta_{CP}
(also \theta_{13})
```

Accelerator Neutrinos

- New analysis on the ~ 36×10^{20} POT collected up to 2020

- New analysis (with the addition of multi-ring events from additional pions/decay products)
- Overall fit uses θ_{13} from reactor data (bayesian and frequentist analyses yielding consistent results), **slight** preference for upper octant and normal ordering!

	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Line total
Normal ordering	0.236	0.540	0.776
Inverted ordering	0.049	0.174	0.224
Column total	0.285	0.715	1.000

 $\delta_{\rm CP}$ best fit at -2.18 (-0.694 π), CP conserving values 0 and π are outside of 90% CL intervals

Accelerator Neutrinos

- New analysis on the ~ 26 × 10²⁰ POT collected up to 2020 (Bayesian analysis)
- 37 \times 10²⁰ POT neutrino data available now

New for Moriond EW 2023

- Slight preference for upper octant and normal ordering

First NOvA measurement of $\sin^2 \theta_{13}$ $\sin^2(2\theta_{13}) = 0.085^{+0.020}_{-0.016}$

> 4 σ evidence of electron antineutrino appearance

Muon Neutrino Disappearance from Ice Cube With Deep Core

Wide ranges of both energy (E) and baseline (L), and largest values

Neutrino distance of travel (L) calculated using arrival direction

First-time using the highest-statistic (9.3yr) DeepCore atmospheric neutrino dataset for oscillation measurements Machine learning tools used for multi-purpose reconstruction

Results competitive Long Baseline results!

First decade of high energy neutrino astronomy

Accelerator neutrinos, up to O(100 GeV)

Cosmic neutrinos

Era of multi-messenger and high-energy neutrino astronomy

Collider neutrinos at the LHC

SND

Collider neutrinos at the LHC

Veto

SciFi

730 layers of 1.1mm tungsten+emulsion

neutrino target and

tracking detector

Provides 8λ...

Trigger / timing

scintillator station

Magnets

0.57 T dipoles

200mm aperture 1.5m decay volume

Trigger / pre-shower

scintillator system

10mm thick scintillators

with dual PMT readout

for triggering and timing

measurement (σ =400ps)

Collider neutrinos at the LHC

First time observation of collider neutrinos, a new aspect of neutrino physics

Looking forward to the emulsion results!

Looking forward to the emulsion results!

Further neutrino results

Strong limits from double beta decay experiments and KATRIN

Anomalies do not seem to be interpretable as sterile neutrinos (backgrounds and nuclear models)

Lepton Flavour Universality in $b \rightarrow sll$ decays

Lepton Flavour Universality in $b \rightarrow sll$ decays

Experimentally electrons are very different than muons and intricate to reconstruct!

Sneaky backgrounds peaking in B mass but at low q^2 were not identified yet (e.g. *KKK*, $K\pi\pi$)

LHCb $K^+\pi^-e^+e^-$ low- q^2 LHCb $K^+\pi^-e^+e^-$ low- q^2 Data (Weighted) + Data (Weighted) +RUN 1 $(3 \, \text{fb}^{-1})$ RUN 2 $(6 \, \text{fb}^{-1})$ Total Total Smooth combinatorial like Smooth combinatorial like Peaking (broad) Peaking (broad) Peaking (sharp) Peaking (sharp) 2.50.0 4500 4750 4750 5000 5250 5750 4250 5000 52505500 425045005500 $m(K^+\pi^-e^+e^-)$ [MeV/c²] $m(K^+\pi^-e^+e^-)$ [MeV/c²] $\begin{array}{c} \text{Counts} \\ \text{Counts} \\ 0.1 \\ \text{Counts} \\ 0.2 \\ 0.2 \\ \text{Counts} \\ 0.2 \\$ $K^+\pi^-e^+e^- \text{ central-}q^2$ + Data (Weighted) LHCb LHCb $K^+\pi^-e^+e^-$ central- q^2 Data (Weighted) RUN 1 $(3 \, \text{fb}^{-1})$ RUN 2 $(6 \, \text{fb}^{-1})$ Total Total Smooth combinatorial like Smooth combinatorial like Peaking (broad) Peaking (broad) Peaking (sharp) Peaking (sharp) 0.0 5250 5500 4750 5000 5250 47505000 57506000 55006000 5750 $m(K^+\pi^-e^+e^-)$ [MeV/c²] $m(K^+\pi^-e^+e^-)$ [MeV/ c^2]

With a new tighter electron identification and taking into account all backgrounds, measurements are in perfect agreement with the SM!

 $R_K \ \mathrm{low}$ - $q^2 \ R_K \ \mathrm{central}$ - $q^2 \ R_{K^*} \ \mathrm{low}$ - $q^2 \ R_{K^*} \ \mathrm{central}$ - q^2

Lepton Flavour Universality at tree-level in $b \rightarrow clv$ LHCb

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}\left(B^0 \to D^{(*)-}\tau^+\nu_{\tau}\right)}{\mathcal{B}\left(B^0 \to D^{(*)-}\mu^+\nu_{\mu}\right)} \quad \text{Both TH and EXP clean!}$$

Two updates from LHCb:

LHCb measurement of R(D*) does not show any tension, still present in the more challenging R(D) channel. Belle will play center stage when new result is out

CPV measurements Belle II

3 new results on time-dependent CP observables with penguins for Moriond

Measure β via time dependent asymmetry of B and \overline{B} decays inferred from the relative position of the decay vertices

Pixel detector radius ≈ 1.4 cm

HFLAV: $S = 0.74^{+0.11} - 0.13$, $A = -0.01 \pm 0.14$

HFLAV: $S = -0.83 \pm 0.17$ A = 0.15 ± 0.12

Belle II - Tau Lepton Mass

• Large $e^+e^- \rightarrow \tau\tau$ cross-section and clean environment allow high precision τ measurements

Benchmark for precision capabilities of Belle II

• Control of **systematic uncertainties** is key:

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)} \le m_{\tau}$$

Reconstruct
$$\tau_{\text{tag}}^{\pm} \rightarrow \pi^{\pm}(\pi^{0})\nu, \ell\nu\nu$$
 and $\tau_{\text{sig}} \rightarrow 3\pi\nu$
(ν missing)

World's most precise measurement of the tau mass (6 . 10^{-5})!

Direct Dark Matter Searches

Xenon nT Hot Off the Press for Moriond!

Science Run-0 Nuclear Recoil Search Data 95.1 days exposure (4.18 ± 0.13) ton Fiducial Volume Exposure: 1.1 tonne-year

LZ Results

Science Run-0 Nuclear Recoil Search Data 60 days exposure (5.3 ± 0.2) ton Fiducial Volume Exposure: 0.9 tonne-year

Both are dual phase Xenon TPCs

Xenon nT results

New for Moriond

Neutron AC

WIMP*

Wall

*) Assuming a 200 GeV WIMP and a best-fit σ = 2.5 \times 10 47 cm 2

Background reduction: careful screening, material selection and continuous radon removal through distillation

Low energy ER excess gone

152 events in ROI, 16 in blinded region Best fit indicates no significant excess

XY asymmetry in unblinded data (13 events in one quadrant)

Not observed in corrections, quality selection or calibration data

Direct dark matter searches

Xenon nT and LZ

Xenon nT First results!

LZ Achieved leading sensitivity

Xenon/DARWIN and Lux Zeppelin join forces for future project, however meanwhile...

Direct dark matter searches

Xenon nT and LZ

Xenon nT First results!

LZ Achieved leading sensitivity

Xenon/DARWIN and Lux Zeppelin join forces for future project, however meanwhile...

Still a lots of data to come!

⁸*Be* Anomaly and PADME

The ATOMKI institute observes the long standing ⁸*Be* anomaly, observed also in ⁴*He* and ¹²*C*, i.e. a significant excess compatible with new particle of 17 MeV mass.

internal pair conversion decays of excited nuclei

DA Φ NE Beam Test Facility is the only facility in the world with a positron beam at 282 MeV (yielding 17 MeV centre-of-mass collisions with fixed target electron!)

PADME experiment (Positron Annihilation into Dark Matter Experiment)

Run has finished and data analysis is ongoing, hoping to shine light on ${}^{8}Be$

Axions : an Ambitious Program... In Hamburg

Helioscope: Sun shining through a wall [Sikivie 83]

Haloscope: DM shining through a wall [Sikivie 83]

[Lindner]

Electromagnetic

high-frequency gravitational wave detection

Valerie Domcke CERN

Moriond Conference, La Thuile March 18 – 25, 2023

based on 2011.12414 Living Review on UHF GW searches,

and work with Camilo Garcia-Cely, Torsten Bringmann, Elina Fuchs, Joachim Kopp, Sung Mook Lee and Nick Rodd

Thank you

Contact

DESY. Deutsches	Krisztian Peters
Elektronen-Synchrotron	DESY-ATLAS
	E-mail: krisztian.peters@desy.de
www.desy.de	Phone: +49 40 8998 3740