Massive Integrals

Outlook 000

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

In collaboration with Stephen Jones (IPPP) & Anton Olsson (KIT)

(and the rest of the pySecDec collaboration: G. Heinrich, M. Kerner, V. Magerya, J. Schlenk)

16th April 2024

イロト 不得 とう アイロト

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

1/39

Massive Integrals

(日)

Outlook 000

Outline

1 Introduction & Motivation

- 2 Massless Integrals
 - 1-Loop Off-Shell Box
 - 2-Loop Non-Planar Box
 - 3-Loop Non-Planar Box
- 3 Massive Integrals
 - Massive Bubble
 - Massive Triangle

4 Outlook

Massive Integrals

Outlook 000

Table of Contents

Introduction & Motivation

- Massless Integrals
 1-Loop Off-Shell Box
 - 2-Loop Non-Planar Box
 - 3-Loop Non-Planar Box
- Massive Integrals
 Massive Bubble
 Massive Triangle

4 Outlook

3/39

Massive Integrals

・ロト ・四ト ・ヨト ・ヨト

Outlook 000

Calculating Loop Integrals

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

4/39

(日)

Calculating Loop Integrals

 Many loop integrals appearing in state-of-the-art amplitude calculations are analytically intractable

(日)

Calculating Loop Integrals

- Many loop integrals appearing in state-of-the-art amplitude calculations are analytically intractable
- Numerical methods developed to tackle these integrals (Monte Carlo techniques, differential equation methods etc.)

Massive Integrals

Calculating Loop Integrals

- Many loop integrals appearing in state-of-the-art amplitude calculations are analytically intractable
- Numerical methods developed to tackle these integrals (Monte Carlo techniques, differential equation methods etc.)
- Exploring singularity structure of Feynman integrals can help us understand how to integrate in the Minkowski regime

Massive Integrals

・ロト ・四ト ・ヨト ・ヨト

Outlook 000

Minkowski Regime

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

5/39

2

Massive Integrals

Minkowski Regime

• Often have trouble numerically calculating in the Minkowski regime due to poles on the contour of integration

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Massive Integrals

Minkowski Regime

- Often have trouble numerically calculating in the Minkowski regime due to poles on the contour of integration
 - Im(z)01Re(z)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \Rightarrow Contour Deformation

Massive Integrals

Minkowski Regime

• Often have trouble numerically calculating in the Minkowski regime due to poles on the contour of integration

 \Rightarrow Contour Deformation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Causal prescription provided by Feynman $i\delta$

[Schwinger; Feynman, Landau; Eden, Landshoff, Olive, Polkinghorne; Hannesdottir, Mizera; ...]

Massive Integrals

Outlook 000

Minkowski Regime

• Often have trouble numerically calculating in the Minkowski regime due to poles on the contour of integration

 \Rightarrow Contour Deformation

- Causal prescription provided by Feynman $i\delta$ [Schwinger; Feynman, Landau; Eden, Landshoff, Olive, Polkinghorne; Hannesdottir, Mizera; ...]
- Methods being explored to remove need for contour deformation in momentum space [Buchta, Chachamis, Draggiotis, Rodrigo; Anastasiou, Haindl, Sterman, Yang, Zeng; Aguilera-Verdugo,

Hernandez-Pinto, Sborlini, Torres Bobadilla; Capatti, Hirschi, Kermanschah, Pelloni, Ruijl; ...]

Massive Integrals

Minkowski Regime

• Often have trouble numerically calculating in the Minkowski regime due to poles on the contour of integration

 \Rightarrow Contour Deformation

< ロ > < 同 > < 三 > < 三 > 、

- Causal prescription provided by Feynman $i\delta$ [Schwinger; Feynman, Landau; Eden, Landshoff, Olive, Polkinghorne; Hannesdottir, Mizera; ...]
- Methods being explored to remove need for contour deformation in momentum space [Buchta, Chachamis, Draggiotis, Rodrigo; Anastasiou, Haindl, Sterman, Yang, Zeng; Aguilera-Verdugo, Hernandez-Pinto, Sborlini, Torres Bobadilla; Capatti, Hirschi, Kermanschah, Pelloni, Ruijl; ...]
- Can we do the same in Feynman parameter space?

Massive Integrals

< □ > < □ > < □ > < □ > < □ > .

Outlook 000

Recap: Feynman Parameterisation

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

6/39

2

Massive Integrals

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Outlook 000

Recap: Feynman Parameterisation

Momentum Space Integral

$$I = \int_{-\infty}^{+\infty} \left(\prod_{l=1}^{L} \frac{\mathrm{d}^{D} k_{l}}{i\pi^{\frac{D}{2}}} \right) \prod_{j=1}^{N} \frac{1}{P_{j}^{\nu_{j}} \left(\{k\}, \{p\}, m_{j}^{2} \right)}$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

6/39

2

Massive Integrals

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Outlook 000

Recap: Feynman Parameterisation

Momentum Space Integral

$$I = \int_{-\infty}^{+\infty} \left(\prod_{l=1}^{L} \frac{\mathrm{d}^{D} k_{l}}{i\pi^{\frac{D}{2}}} \right) \prod_{j=1}^{N} \frac{1}{P_{j}^{\nu_{j}} \left(\{k\}, \{p\}, m_{j}^{2} \right)}$$

∜

Feynman-Parameterised Integral

$$I = \frac{(-1)^{\nu} \Gamma(\nu - LD/2)}{\prod_{j=1}^{N} \Gamma(\nu_j)} \int_{\mathbb{R}_{\geq 0}^{N}} \left(\prod_{j=1}^{N} \mathrm{d}x_j x_j^{\nu_j - 1} \right) \frac{\mathcal{U}(\mathbf{x})^{\nu - (L+1)D/2}}{(\mathcal{F}(\mathbf{x}, \mathbf{s}) - i\delta)^{\nu - LD/2}} \delta\left(1 - \sum_{j=1}^{N} x_j \right)$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

6/39

Massive Integrals

Outlook 000

Recap: Feynman Parameterisation

Momentum Space Integral

$$I = \int_{-\infty}^{+\infty} \left(\prod_{l=1}^{L} \frac{\mathrm{d}^{D} k_{l}}{i \pi^{\frac{D}{2}}} \right) \prod_{j=1}^{N} \frac{1}{P_{j}^{\nu_{j}} \left(\{k\}, \{p\}, m_{j}^{2} \right)}$$

₩

Feynman-Parameterised Integral

$$I = \frac{(-1)^{\nu} \Gamma(\nu - LD/2)}{\prod_{j=1}^{N} \Gamma(\nu_j)} \int_{\mathbb{R}_{\geq 0}^{N}} \left(\prod_{j=1}^{N} \mathrm{d} x_j x_j^{\nu_j - 1} \right) \frac{\mathcal{U}(\mathbf{x})^{\nu - (L+1)D/2}}{(\mathcal{F}(\mathbf{x}, \mathbf{s}) - i\delta)^{\nu - LD/2}} \delta\left(1 - \sum_{j=1}^{N} x_j \right)$$

 $\mathcal{U} \And \mathcal{F}$ constructable directly from Feynman diagrams with $\mathcal{U} \ge 0$ and \mathcal{F} depending on both parameters **and** kinematics

Massive Integrals

ヘロン 人間 とくほ とくほ とう

Outlook 000

Contour Deformation in Parameter Space

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

7/39

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Contour Deformation in Parameter Space

• The $i\delta$ prescription in momentum space induces $\mathcal{F} - i\delta$ in Feynman parameter space

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

7/39

(日)

Contour Deformation in Parameter Space

- The $i\delta$ prescription in momentum space induces $\mathcal{F}-i\delta$ in Feynman parameter space
- This is needed when \mathcal{F} is 0 within the boundary of integration (i.e. within $\mathbb{R}^N_{>0}$)

7/39

・ロト ・同ト ・ヨト ・ヨト ・ヨー

Contour Deformation in Parameter Space

- The $i\delta$ prescription in momentum space induces $\mathcal{F} i\delta$ in Feynman parameter space
- This is needed when \mathcal{F} is 0 within the boundary of integration (i.e. within $\mathbb{R}^{N}_{>0}$)

Implementation in Parameter Space

$$\mathcal{F}(\vec{z}) = \mathcal{F}(\vec{x}) - i \sum_{j} \tau_{j} \frac{\partial \mathcal{F}(\vec{x})}{\partial x_{j}} \qquad \tau_{j} = \lambda_{j} x_{j} \left(1 - x_{j}\right) \frac{\partial \mathcal{F}(\vec{x})}{\partial x_{j}}$$

[Soper; Binoth, Guillet, Heinrich, Pilon, Schubert; Nagy; Anastasiou, Beerli, Daleo; Borowka, Carter; ...]

Contour Deformation in Parameter Space

- The $i\delta$ prescription in momentum space induces $\mathcal{F} i\delta$ in Feynman parameter space
- This is needed when \mathcal{F} is 0 within the boundary of integration (i.e. within $\mathbb{R}^N_{>0}$)

Implementation in Parameter Space

$$\mathcal{F}(\vec{z}) = \mathcal{F}(\vec{x}) - i \sum_{j} \tau_{j} \frac{\partial \mathcal{F}(\vec{x})}{\partial x_{j}} \qquad \tau_{j} = \lambda_{j} x_{j} \left(1 - x_{j}\right) \frac{\partial \mathcal{F}(\vec{x})}{\partial x_{j}}$$

[Soper; Binoth, Guillet, Heinrich, Pilon, Schubert; Nagy; Anastasiou, Beerli, Daleo; Borowka, Carter; ...]

• Many techniques, including neural networks [Winterhalder, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn; ...], have been used to optimise this choice but overall can still slow down integration massively

Contour Deformation in Parameter Space

- The $i\delta$ prescription in momentum space induces $\mathcal{F} i\delta$ in Feynman parameter space
- This is needed when \mathcal{F} is 0 within the boundary of integration (i.e. within $\mathbb{R}^N_{>0}$)

Implementation in Parameter Space

$$\mathcal{F}(\vec{z}) = \mathcal{F}(\vec{x}) - i \sum_{j} \tau_{j} \frac{\partial \mathcal{F}(\vec{x})}{\partial x_{j}} \qquad \tau_{j} = \lambda_{j} x_{j} \left(1 - x_{j}\right) \frac{\partial \mathcal{F}(\vec{x})}{\partial x_{j}}$$

[Soper; Binoth, Guillet, Heinrich, Pilon, Schubert; Nagy; Anastasiou, Beerli, Daleo; Borowka, Carter; ...]

- Many techniques, including neural networks [Winterhalder, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn; ...], have been used to optimise this choice but overall can still slow down integration massively
- There are even cases where this procedure fails entirely! [see Stephen Jones' talk]

Massive Integrals

・ロト ・ 同ト ・ ヨト ・ ヨト

Outlook 000

Contour Deformation in Parameter Space

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

8/39

Massive Integrals

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

Outlook 000

Contour Deformation in Parameter Space

"Can we avoid this sometimes?"

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

8/39

Massive Integrals

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

Outlook 000

Contour Deformation in Parameter Space

"Can we avoid this sometimes?"

Yes!

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

8/39

Massive Integrals

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

Outlook 000

Contour Deformation in Parameter Space

"Can we avoid this sometimes?"

Yes!

"Always?"

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

8/39

Massive Integrals

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

Outlook 000

Contour Deformation in Parameter Space

"Can we avoid this sometimes?"

Yes!

"Always?"

Maybe...?

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

8/39

Massive Integrals

< □ > < □ > < □ > < □ > < □ > .

Outlook 000

The Idea

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

9/39

æ

Massive Integrals

Outlook 000

The Idea

Construct transformations of the Feynman parameters to map zeroes of the ${\cal F}$ polynomial to the boundary of integration

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Massive Integrals

The Idea

Construct transformations of the Feynman parameters to map zeroes of the ${\cal F}$ polynomial to the boundary of integration

Massive Integrals

Outlook 000

The Idea

Construct transformations of the Feynman parameters to map zeroes of the ${\cal F}$ polynomial to the boundary of integration

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

The Idea

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

10/39

æ

Introduction	&	Motivation
0000000	οс	

Massive Integral

イロン 不得 とくほ とくほ とうほう

Outlook 000

The Idea

 These transformations look like: a) positive parameter rescalings: e.g. x_j → αx_j or x_j → x_ix_j

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Introduction	&	Motivation
0000000	οс	

Massive Integrals

The Idea

 These transformations look like: a) positive parameter rescalings: e.g. x_i → αx_i or x_i → x_ix_j

Cheng-Wu Theorem [Cheng, Wu] [see e.g. Smirnov; Weinzierl; ...]

$$\forall S \subseteq \{1, ..., N\} \land S \neq \emptyset :$$

$$\delta \left(1 - \sum_{j=1}^{N} x_j\right) \rightarrow \delta \left(1 - \sum_{j \in S} x_j\right) \text{ leaves } I \text{ invariant}$$

Introduction	&	Motivation			
0000000000					

Massive Integrals

Outlook 000

The Idea

 These transformations look like: a) positive parameter rescalings: e.g. x_i → αx_i or x_i → x_ix_j

Cheng-Wu Theorem [Cheng, Wu] [see e.g. Smirnov; Weinzierl; ...]

$$\begin{array}{l} \forall S \subseteq \{1,...,N\} \land S \neq \emptyset: \\ \delta \Biggl(1 - \sum\limits_{j=1}^{N} x_j \Biggr) \rightarrow \delta \Biggl(1 - \sum\limits_{j \in S} x_j \Biggr) \text{ leaves } I \text{ invariant} \end{array}$$

 and b) the introduction of hierarchies between Feynman parameters which generate split integrals to cover the entire original parameter space: e.g. x_j → x_i + x_j

10/39

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで…
Massive Integrals

(日) (월) (분) (분) (분)

The Idea

 These transformations look like: a) positive parameter rescalings: e.g. x_i → αx_i or x_i → x_ix_j

Cheng-Wu Theorem [Cheng, Wu] [see e.g. Smirnov; Weinzierl; ...]

$$\begin{array}{l} \forall S \subseteq \{1,...,N\} \land S \neq \emptyset: \\ \delta \Biggl(1 - \sum\limits_{j=1}^{N} x_j \Biggr) \rightarrow \delta \Biggl(1 - \sum\limits_{j \in S} x_j \Biggr) \text{ leaves } I \text{ invariant} \end{array}$$

 and b) the introduction of hierarchies between Feynman parameters which generate split integrals to cover the entire original parameter space: e.g. x_j → x_i + x_j

Heaviside Identity

Under the integral sign: $\theta(x_a - x_b) + \theta(x_b - x_a) = 1$

10/39

Massive Integrals

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Outlook 000

The Idea

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

11/39

æ

Introduction	&	Motivation	
0000000000			

Massive Integrals

イロト イポト イヨト イヨト

Outlook 000

The Idea

• These transformations result in us only integrating multiple manifestly non-negative integrands

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

11/39

э.

Introduction	&	Motivation	
0000000000			

Massive Integrals

イロト イポト イヨト イヨト

Outlook 000

The Idea

- These transformations result in us only integrating multiple manifestly non-negative integrands
- For the transformations which make *F* non-positive, extract an overall minus sign and bring it out of the integral along with the *iδ* to generate the physically-correct imaginary part

11/39

Introduction	&	Motivation	
0000000000			

Massive Integrals

イロト イポト イヨト イヨト

Outlook 000

The Idea

- These transformations result in us only integrating multiple manifestly non-negative integrands
- For the transformations which make *F* non-positive, extract an overall minus sign and bring it out of the integral along with the *iδ* to generate the physically-correct imaginary part
- We stitch everything together as follows:

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

11/39

Massive Integrals

イロト 不得 トイヨト イヨト ニヨー

The Idea

- These transformations result in us only integrating multiple manifestly non-negative integrands
- For the transformations which make *F* non-positive, extract an overall minus sign and bring it out of the integral along with the *iδ* to generate the physically-correct imaginary part
- We stitch everything together as follows:

Overall Construction

$$I = \sum_{n_{+}=1}^{N_{+}} I_{n_{+}}^{+} + (-1 - i\delta)^{-(\nu - LD/2)} \sum_{n_{-}=1}^{N_{-}} I_{n_{-}}^{-}$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

The Idea

- These transformations result in us only integrating multiple manifestly non-negative integrands
- For the transformations which make *F* non-positive, extract an overall minus sign and bring it out of the integral along with the *iδ* to generate the physically-correct imaginary part
- We stitch everything together as follows:

Overall Construction

$$I = \sum_{n_{+}=1}^{N_{+}} I_{n_{+}}^{+} + (-1 - i\delta)^{-(\nu - LD/2)} \sum_{n_{-}=1}^{N_{-}} I_{n_{-}}^{-}$$

 Can be much faster numerically to only calculate the manifestly non-negative integrals {*I*⁺_{n+}, *I*⁻_{n-}}!

・ロト <
ゆ ト <
き ト <
き ト き の へ の 11/39
</p>

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

The Idea

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

12/39

æ

Massive Integrals

< ロ > < 同 > < 回 > < 回 > < □ > <

The Idea

Lets consider the one-loop massless box with an offshell leg to make this concrete:

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

12/39

The Idea

Lets consider the one-loop massless box with an offshell leg to make this concrete:

12/39

Massive Integrals

< ロ > < 同 > < 回 > < 回 >

Outlook 000

Table of Contents

Introduction & Motivation

- Massless Integrals
 1-Loop Off-Shell Box
 - 2-Loop Non-Planar Box
 - 3-Loop Non-Planar Box
- Massive Integrals
 Massive Bubble
 Massive Triangle

4 Outlook

13/39

Introduction & Motivation

Massless Integrals

Massive Integrals

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Outlook 000

1-Loop Off-Shell Box

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

Massive Integrals

イロト イポト イヨト イヨト

Outlook 000

1-Loop Off-Shell Box

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

Massive Integrals

イロト イポト イヨト イヨト

1-Loop Off-Shell Box

• *U* =

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

Massive Integrals

イロト イポト イヨト イヨト

1-Loop Off-Shell Box

• *U* =**x**₀

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

Massive Integrals

イロト イポト イヨト イヨト

Outlook 000

1-Loop Off-Shell Box

• $\mathcal{U} = x_0 + x_1$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

Massive Integrals

1-Loop Off-Shell Box

• $\mathcal{U} = x_0 + x_1 + x_2$

イロト イポト イヨト イヨト

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

э.

Massive Integrals

Outlook 000

1-Loop Off-Shell Box

• $U = x_0 + x_1 + x_2 + x_3$

イロト イポト イヨト イヨト

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

Massive Integrals

Outlook 000

1-Loop Off-Shell Box

U =x₀+x₁+x₂+x₃ *F* =

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

э.

Massive Integrals

Outlook 000

1-Loop Off-Shell Box

• $\mathcal{U} = x_0 + x_1 + x_2 + x_3$

イロト イポト イヨト イヨト

•
$$\mathcal{F} = -sx_0x_2$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

Massive Integrals

Outlook 000

1-Loop Off-Shell Box

• $\mathcal{U} = x_0 + x_1 + x_2 + x_3$

•
$$\mathcal{F} = -sx_0x_2 - tx_1x_3$$

イロト イポト イヨト イヨト

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

Massive Integrals

1-Loop Off-Shell Box

U = x₀+x₁+x₂+x₃ *F* = −sx₀x₂−tx₁x₃−p₁²x₀x₁

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

14/39

Massive Integrals

1-Loop Off-Shell Box

U = x₀+x₁+x₂+x₃ *F* = −sx₀x₂−tx₁x₃−p₁²x₀x₁

イロト イポト イヨト イヨト

Let's consider the regime: s > 0, $p_1^2 > 0$ & $t < 0 \implies$ zeroes of \mathcal{F} within the integration volume for $\{x_0, x_1, x_2, x_3\} \in \mathbb{R}^4_{\geq 0}$

14/39

Introduction & Motivation

Massless Integrals

Massive Integrals

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Outlook 000

1-Loop Off-Shell Box

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

15/39

Massive Integrals

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Outlook 000

1-Loop Off-Shell Box

•
$$\mathcal{F} = -sx_0x_2 + |t|x_1x_3 - p_1^2x_0x_1$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

15/39

Massive Integrals

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Outlook 000

1-Loop Off-Shell Box

•
$$\mathcal{F} = -sx_0x_2 + |t|x_1x_3 - p_1^2x_0x_1$$

• First, rescale
$$x_0 \& x_3$$
: $x_0 \to \frac{x_0 x_1}{s}$, $x_3 \to \frac{x_2 x_3}{|t|}$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

15/39

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

1-Loop Off-Shell Box

•
$$\mathcal{F} = -sx_0x_2 + |t|x_1x_3 - p_1^2x_0x_1$$

• First, rescale
$$x_0$$
 & x_3 : $x_0 \rightarrow \frac{x_0 x_1}{s}$, $x_3 \rightarrow \frac{x_2 x_3}{|t|}$

•
$$\mathcal{F} \to x_1 \left(x_2 \left(x_3 - x_0 \right) - \frac{p_1^2}{s} x_0 x_1 \right)$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

15/39

イロン 不得 とくほ とくほ とうほう

1-Loop Off-Shell Box

- $\mathcal{F} = -sx_0x_2 + |t|x_1x_3 p_1^2x_0x_1$
- First, rescale x_0 & x_3 : $x_0 \rightarrow \frac{x_0x_1}{s}$, $x_3 \rightarrow \frac{x_2x_3}{|t|}$
- $\mathcal{F} \to x_1 \left(x_2 \left(x_3 x_0 \right) \frac{p_1^2}{s} x_0 x_1 \right)$
- Introduce the hierarchy $x_0 > x_3$ by *shifting* x_0 : $x_0 \rightarrow x_0 + x_3$

15/39

1-Loop Off-Shell Box

- $\mathcal{F} = -sx_0x_2 + |t|x_1x_3 p_1^2x_0x_1$
- First, rescale x_0 & x_3 : $x_0 \rightarrow \frac{x_0 x_1}{s}$, $x_3 \rightarrow \frac{x_2 x_3}{|t|}$
- $\mathcal{F} \to x_1 \left(x_2 \left(x_3 x_0 \right) \frac{p_1^2}{s} x_0 x_1 \right)$
- Introduce the hierarchy $x_0 > x_3$ by *shifting* x_0 : $x_0 \rightarrow x_0 + x_3$
- $\mathcal{F} \to -\frac{1}{s} \left(x_1 \left(s x_0 x_2 + p_1^2 x_1 \left(x_0 + x_3 \right) \right) \right)$

15/39

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1-Loop Off-Shell Box

- $\mathcal{F} = -sx_0x_2 + |t|x_1x_3 p_1^2x_0x_1$
- First, rescale x_0 & x_3 : $x_0 \rightarrow \frac{x_0 x_1}{s}$, $x_3 \rightarrow \frac{x_2 x_3}{|t|}$
- $\mathcal{F} \to x_1 \left(x_2 \left(x_3 x_0 \right) \frac{p_1^2}{s} x_0 x_1 \right)$
- Introduce the hierarchy $x_0 > x_3$ by *shifting* x_0 : $x_0 \rightarrow x_0 + x_3$
- $\mathcal{F} \to -\frac{1}{s} \left(x_1 \left(s x_0 x_2 + p_1^2 x_1 \left(x_0 + x_3 \right) \right) \right) =: -\mathcal{F}_1^-$

15/39

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1-Loop Off-Shell Box

- $\mathcal{F} = -sx_0x_2 + |t|x_1x_3 p_1^2x_0x_1$
- First, rescale x_0 & x_3 : $x_0 \rightarrow \frac{x_0 x_1}{s}$, $x_3 \rightarrow \frac{x_2 x_3}{|t|}$
- $\mathcal{F} \to x_1 \left(x_2 \left(x_3 x_0 \right) \frac{p_1^2}{s} x_0 x_1 \right)$
- Introduce the hierarchy $x_0 > x_3$ by *shifting* $x_0: x_0 \rightarrow x_0 + x_3$
- $\mathcal{F} \to -\frac{1}{s} \left(x_1 \left(s x_0 x_2 + p_1^2 x_1 \left(x_0 + x_3 \right) \right) \right) =: -\mathcal{F}_1^-$
- \mathcal{F}_1^- non-negative as required!

15/39

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで…

1-Loop Off-Shell Box

- $\mathcal{F} = -sx_0x_2 + |t|x_1x_3 p_1^2x_0x_1$
- First, rescale x_0 & x_3 : $x_0 \rightarrow \frac{x_0 x_1}{s}$, $x_3 \rightarrow \frac{x_2 x_3}{|t|}$
- $\mathcal{F} \to x_1 \left(x_2 \left(x_3 x_0 \right) \frac{p_1^2}{s} x_0 x_1 \right)$
- Introduce the hierarchy $x_0 > x_3$ by *shifting* x_0 : $x_0 \rightarrow x_0 + x_3$
- $\mathcal{F} \to -\frac{1}{s} \left(x_1 \left(s x_0 x_2 + p_1^2 x_1 \left(x_0 + x_3 \right) \right) \right) =: -\mathcal{F}_1^-$
- \mathcal{F}_1^- non-negative as required!
- To cover the whole original space, the Heaviside identity tells us we need to consider the converse case (x₃ > x₀) so *shift* x₃: x₃ → x₀ + x₃

1-Loop Off-Shell Box

- $\mathcal{F} = -sx_0x_2 + |t|x_1x_3 p_1^2x_0x_1$
- First, rescale x_0 & x_3 : $x_0 \rightarrow \frac{x_0 x_1}{s}$, $x_3 \rightarrow \frac{x_2 x_3}{|t|}$
- $\mathcal{F} \to x_1 \left(x_2 \left(x_3 x_0 \right) \frac{p_1^2}{s} x_0 x_1 \right)$
- Introduce the hierarchy $x_0 > x_3$ by *shifting* x_0 : $x_0 \rightarrow x_0 + x_3$

•
$$\mathcal{F} \to -\frac{1}{s} \left(x_1 \left(s x_0 x_2 + p_1^2 x_1 \left(x_0 + x_3 \right) \right) \right) =: -\mathcal{F}_1^-$$

- \mathcal{F}_1^- non-negative as required!
- To cover the whole original space, the Heaviside identity tells us we need to consider the converse case (x₃ > x₀) so *shift* x₃:
 x₃ → x₀ + x₃

•
$$\mathcal{F} \to x_1 \left(-\frac{p_1^2}{s} x_0 x_1 + x_2 x_3 \right)$$

1-Loop Off-Shell Box

- $\mathcal{F} = -sx_0x_2 + |t|x_1x_3 p_1^2x_0x_1$
- First, rescale x_0 & x_3 : $x_0 \rightarrow \frac{x_0 x_1}{s}$, $x_3 \rightarrow \frac{x_2 x_3}{|t|}$
- $\mathcal{F} \to x_1 \left(x_2 \left(x_3 x_0 \right) \frac{p_1^2}{s} x_0 x_1 \right)$
- Introduce the hierarchy $x_0 > x_3$ by *shifting* x_0 : $x_0 \rightarrow x_0 + x_3$

•
$$\mathcal{F} \to -\frac{1}{s} \left(x_1 \left(s x_0 x_2 + p_1^2 x_1 \left(x_0 + x_3 \right) \right) \right) =: -\mathcal{F}_1^-$$

To cover the whole original space, the Heaviside identity tells us we need to consider the converse case (x₃ > x₀) so *shift* x₃: x₃ → x₀ + x₃

•
$$\mathcal{F} \to x_1 \left(-\frac{p_1^2}{s} x_0 x_1 + x_2 x_3 \right)$$

• This is **not** of uniform sign \Rightarrow needs further work!

Introduction & Motivation

Massless Integrals

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

1-Loop Off-Shell Box

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

16/39

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

1-Loop Off-Shell Box

• Rescale again:
$$x_2 \rightarrow \frac{p_1^2 x_0 x_2}{s}, x_1 \rightarrow x_1 x_3$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

16/39
Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

1-Loop Off-Shell Box

• *Rescale* again:
$$x_2 \rightarrow \frac{p_1^2 x_0 x_2}{s}, x_1 \rightarrow x_1 x_3$$

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_3^2 (x_2 - x_1)$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

16/39

ъ

1-Loop Off-Shell Box

• Rescale again: $x_2 \rightarrow \frac{p_1^2 x_0 x_2}{s}, x_1 \rightarrow x_1 x_3$

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_3^2 (x_2 - x_1)$$

• Suggests introducing new hierarchy! First $x_2 > x_1 \Rightarrow shift x_2$:

Massive Integrals

1-Loop Off-Shell Box

• Rescale again: $x_2
ightarrow rac{p_1^2 x_0 x_2}{s}, x_1
ightarrow x_1 x_3$

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_3^2 (x_2 - x_1)$$

• Suggests introducing new hierarchy! First $x_2 > x_1 \Rightarrow shift x_2$:

•
$$\mathcal{F} \rightarrow \frac{p_1^2}{s} x_0 x_1 x_2 x_3^2$$

16/39

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで…

Massive Integrals

Outlook 000

1-Loop Off-Shell Box

• Rescale again: $x_2
ightarrow rac{p_1^2 x_0 x_2}{s}, x_1
ightarrow x_1 x_3$

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_3^2 (x_2 - x_1)$$

• Suggests introducing new hierarchy! First $x_2 > x_1 \Rightarrow shift x_2$:

•
$$\mathcal{F} \to rac{p_1^2}{s} x_0 x_1 x_2 x_3^2 =: \mathcal{F}_1^+$$

1-Loop Off-Shell Box

• Rescale again: $x_2
ightarrow rac{p_1^2 x_0 x_2}{s}, x_1
ightarrow x_1 x_3$

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_3^2 (x_2 - x_1)$$

• Suggests introducing new hierarchy! First $x_2 > x_1 \Rightarrow shift x_2$:

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_2 x_3^2 =: \mathcal{F}_1^+$$

• Now
$$x_1 > x_2 \Rightarrow shift x_1$$
:

1-Loop Off-Shell Box

• Rescale again: $x_2 \rightarrow \frac{p_1^2 x_0 x_2}{s}, x_1 \rightarrow x_1 x_3$

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_3^2 (x_2 - x_1)$$

• Suggests introducing new hierarchy! First $x_2 > x_1 \Rightarrow shift x_2$:

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_2 x_3^2 =: \mathcal{F}_1^+$$

• Now $x_1 > x_2 \Rightarrow$ *shift* x_1 :

•
$$\mathcal{F} \to -\frac{p_1^2}{s} x_0 x_1 (x_1 + x_2) x_3^2$$

1-Loop Off-Shell Box

• Rescale again: $x_2 \rightarrow \frac{p_1^2 x_0 x_2}{s}, x_1 \rightarrow x_1 x_3$

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_3^2 (x_2 - x_1)$$

• Suggests introducing new hierarchy! First $x_2 > x_1 \Rightarrow shift x_2$:

•
$$\mathcal{F} \to rac{p_1^2}{s} x_0 x_1 x_2 x_3^2 =: \mathcal{F}_1^+$$

• Now $x_1 > x_2 \Rightarrow$ *shift* x_1 :

•
$$\mathcal{F} \to -\frac{p_1^2}{s} x_0 x_1 (x_1 + x_2) x_3^2 =: -\mathcal{F}_2^-$$

1-Loop Off-Shell Box

• Rescale again: $x_2 \rightarrow \frac{p_1^2 x_0 x_2}{s}, x_1 \rightarrow x_1 x_3$

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_3^2 (x_2 - x_1)$$

• Suggests introducing new hierarchy! First $x_2 > x_1 \Rightarrow shift x_2$:

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_2 x_3^2 =: \mathcal{F}_1^+$$

- Now $x_1 > x_2 \Rightarrow$ *shift* x_1 :
- $\mathcal{F} \to -\frac{p_1^2}{s} x_0 x_1 (x_1 + x_2) x_3^2 =: -\mathcal{F}_2^-$
- Generate U₁⁺, U₁⁻ & U₂⁻ by applying the corresponding transformations to U

Massive Integrals

Outlook 000

1-Loop Off-Shell Box

• Rescale again: $x_2
ightarrow rac{p_1^2 x_0 x_2}{s}, x_1
ightarrow x_1 x_3$

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_3^2 (x_2 - x_1)$$

• Suggests introducing new hierarchy! First $x_2 > x_1 \Rightarrow shift x_2$:

•
$$\mathcal{F} \to \frac{p_1^2}{s} x_0 x_1 x_2 x_3^2 =: \mathcal{F}_1^+$$

• Now $x_1 > x_2 \Rightarrow shift x_1$:

•
$$\mathcal{F} \to -\frac{p_1^2}{s} x_0 x_1 (x_1 + x_2) x_3^2 =: -\mathcal{F}_2^-$$

- Generate \mathcal{U}_1^+ , \mathcal{U}_1^- & \mathcal{U}_2^- by applying the corresponding transformations to \mathcal{U}
- Generate the absolute values of the corresponding Jacobian determinants: \mathcal{J}_1^+ , \mathcal{J}_1^- & \mathcal{J}_2^-

Massive Integrals

1-Loop Off-Shell Box: Putting the Jigsaw Pieces Together

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

17/39

・ ロ ト ス 雪 ト ス ヨ ト ・

1-Loop Off-Shell Box: Putting the Jigsaw Pieces Together

• We converted our initial single integral *I* into a sum over 3 easier integrals

17/39

イロト イポト イヨト イヨト

1-Loop Off-Shell Box: Putting the Jigsaw Pieces Together

• We converted our initial single integral *I* into a sum over 3 easier integrals

1-Loop Off-Shell Box

$$I = I_1^+ + (-1 - i\delta)^{-2-\varepsilon} \left(I_1^- + I_2^- \right)$$

17/39

э.

< ロ > < 同 > < 回 > < 回 > < □ > <

1-Loop Off-Shell Box: Putting the Jigsaw Pieces Together

• We converted our initial single integral *I* into a sum over 3 easier integrals

1-Loop Off-Shell Box

$$I = I_1^+ + (-1 - i\delta)^{-2-\varepsilon} \left(I_1^- + I_2^-\right)$$

• Each of the manifestly non-negative integrands has the following structure:

17/39

< ロ > < 同 > < 回 > < 回 > < □ > <

1-Loop Off-Shell Box: Putting the Jigsaw Pieces Together

• We converted our initial single integral *I* into a sum over 3 easier integrals

1-Loop Off-Shell Box

$$I = I_1^+ + (-1 - i\delta)^{-2-\varepsilon} \left(I_1^- + I_2^- \right)$$

• Each of the manifestly non-negative integrands has the following structure:

$$\mathcal{J}_{n_{\pm}}^{\pm} \left(\mathcal{U}_{n_{\pm}}^{\pm} \right)^{2\varepsilon} \left(\mathcal{F}_{n_{\pm}}^{\pm} \right)^{-2-\varepsilon}$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

17/39

< ロ > < 同 > < 回 > < 回 > < □ > <

1-Loop Off-Shell Box: Putting the Jigsaw Pieces Together

• We converted our initial single integral *I* into a sum over 3 easier integrals

1-Loop Off-Shell Box

$$I = I_1^+ + (-1 - i\delta)^{-2-\varepsilon} \left(I_1^- + I_2^- \right)$$

• Each of the manifestly non-negative integrands has the following structure:

$$\mathcal{J}_{n_{\pm}}^{\pm}\left(\mathcal{U}_{n_{\pm}}^{\pm}
ight)^{2arepsilon}\left(\mathcal{F}_{n_{\pm}}^{\pm}
ight)^{-2-arepsilon}$$

 \bullet Verified numerical result against the known analytic result \checkmark

17/39

Introduction & Motivation

Massless Integrals

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

2-Loop Non-Planar Box

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

18/39

ъ

Massive Integrals

イロト イポト イヨト イヨト

Outlook 000

2-Loop Non-Planar Box

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

18/39

Massive Integrals

Outlook

2-Loop Non-Planar Box

• $\mathcal{U} = x_0 x_1 + x_0 x_2 + x_0 x_3 + x_0 x_4 + x_1 x_2 + x_1 x_3 + x_1 x_5 + x_2 x_4 + x_2 x_5 + x_3 x_4 + x_3 x_5 + x_4 x_5$

< ロ > < 同 > < 回 > < 回 > < □ > <

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

18/39

Massive Integrals

Outlook 000

2-Loop Non-Planar Box

• $\mathcal{U} = x_0x_1 + x_0x_2 + x_0x_3 + x_0x_4 + x_1x_2 + x_1x_3 + x_1x_5 + x_2x_4 + x_2x_5 + x_3x_4 + x_3x_5 + x_4x_5$

イロト イポト イヨト イヨト

• $\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 - ux_0x_2x_4$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

18/39

э.

Massive Integrals

イロト イポト イヨト イヨト

Outlook 000

2-Loop Non-Planar Box

Momentum conservation implies $s + t + u = 0 \Rightarrow u = -(s + t)$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

18/39

.

Massive Integrals

イロト イポト イヨト イヨト

Outlook 000

2-Loop Non-Planar Box

Momentum conservation implies $s + t + u = 0 \Rightarrow u = -(s + t)$ Hence, \mathcal{F} can be 0 within $\{x_i\} \in \mathbb{R}^6_{\geq 0}$ even with s > 0, t > 0

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

18/39

э.

イロト イポト イヨト イヨト

2-Loop Non-Planar Box

Momentum conservation implies $s + t + u = 0 \Rightarrow u = -(s + t)$ Hence, \mathcal{F} can be 0 within $\{x_i\} \in \mathbb{R}^6_{\geq 0}$ even with s > 0, t > 0Not possible to define a Euclidean region at all!

18/39

イロト イポト イヨト イヨト

2-Loop Non-Planar Box

Momentum conservation implies $s + t + u = 0 \Rightarrow u = -(s + t)$ Hence, \mathcal{F} can be 0 within $\{x_i\} \in \mathbb{R}^6_{\geq 0}$ even with s > 0, t > 0Not possible to define a Euclidean region at all! Nevertheless, the method works

18/39

Introduction & Motivation

Massless Integrals

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

2-Loop Non-Planar Box

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

19/39

ъ

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

19/39

ъ

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

• $x_1 \rightarrow x_1 x_4$ then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

19/39

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

•
$$x_1 \rightarrow x_1 x_4$$
 then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$

•
$$\mathcal{F} \to x_1^2 x_4 \left(s x_2 \left(x_0 - x_5 \right) + |t| x_0 \left(x_3 - x_2 \right) \right)$$

19/39

ъ

イロン 不得 とくほ とくほ とうほう

2-Loop Non-Planar Box

- $\mathcal{F} = -sx_1x_2x_5 tx_0x_1x_3 + (s+t)x_0x_2x_4$
- $x_1 \rightarrow x_1 x_4$ then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$
- $\mathcal{F} \to x_1^2 x_4 \left(s x_2 \left(x_0 x_5 \right) + |t| x_0 \left(x_3 x_2 \right) \right)$
- Let's look at one set of splittings to see how the method works in the kinematic region s>-t=1

19/39

イロト イポト イヨト イヨト

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

•
$$x_1 \rightarrow x_1 x_4$$
 then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$

•
$$\mathcal{F} \to x_1^2 x_4 \left(s x_2 \left(x_0 - x_5 \right) + |t| x_0 \left(x_3 - x_2 \right) \right)$$

• Let's look at one set of splittings to see how the method works in the kinematic region s > -t = 1

•
$$x_2 \to x_2 + x_3, x_0 \to x_0 + x_5$$

19/39

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

•
$$x_1 \rightarrow x_1 x_4$$
 then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$

•
$$\mathcal{F} \to x_1^2 x_4 \left(s x_2 \left(x_0 - x_5 \right) + |t| x_0 \left(x_3 - x_2 \right) \right)$$

• Let's look at one set of splittings to see how the method works in the kinematic region s > -t = 1

•
$$x_2 \to x_2 + x_3, x_0 \to x_0 + x_5$$

• $x_3 \rightarrow x_2 x_3$ then $x_5 \rightarrow x_5 (s-1+sx_3)$ then $x_0 \rightarrow x_0 + x_5$

<ロト < 母 ト < 臣 ト < 臣 ト 王 の < で 19/39

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

•
$$x_1 \rightarrow x_1 x_4$$
 then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$

•
$$\mathcal{F} \to x_1^2 x_4 \left(s x_2 \left(x_0 - x_5 \right) + |t| x_0 \left(x_3 - x_2 \right) \right)$$

• Let's look at one set of splittings to see how the method works in the kinematic region s > -t = 1

•
$$x_2 \to x_2 + x_3, x_0 \to x_0 + x_5$$

• $x_3 \rightarrow x_2 x_3$ then $x_5 \rightarrow x_5 (s - 1 + s x_3)$ then $x_0 \rightarrow x_0 + x_5$

•
$$\mathcal{F} \to x_0 x_1^2 x_2 x_4 (s - 1 + s x_3)$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 の < で 19/39

イロト イポト イヨト イヨト

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

•
$$x_1 \rightarrow x_1 x_4$$
 then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$

•
$$\mathcal{F} \to x_1^2 x_4 \left(s x_2 \left(x_0 - x_5 \right) + |t| x_0 \left(x_3 - x_2 \right) \right)$$

• Let's look at one set of splittings to see how the method works in the kinematic region s > -t = 1

•
$$x_2 \to x_2 + x_3, x_0 \to x_0 + x_5$$

•
$$x_3
ightarrow x_2 x_3$$
 then $x_5
ightarrow x_5 (s-1+s x_3)$ then $x_0
ightarrow x_0 + x_5$

•
$$\mathcal{F} \to x_0 x_1^2 x_2 x_4 (s - 1 + s x_3) =: \mathcal{F}_1^+$$

19/39

イロト イヨト イヨト イヨト 三日

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

•
$$x_1 \rightarrow x_1 x_4$$
 then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$

•
$$\mathcal{F} \to x_1^2 x_4 \left(s x_2 \left(x_0 - x_5 \right) + |t| x_0 \left(x_3 - x_2 \right) \right)$$

• Let's look at one set of splittings to see how the method works in the kinematic region s > -t = 1

•
$$x_2 \to x_2 + x_3, x_0 \to x_0 + x_5$$

•
$$x_3 \rightarrow x_2 x_3$$
 then $x_5 \rightarrow x_5 (s - 1 + s x_3)$ then $x_0 \rightarrow x_0 + x_5$

•
$$\mathcal{F} \to x_0 x_1^2 x_2 x_4 (s - 1 + s x_3) =: \mathcal{F}_1^+$$

• $x_3 \rightarrow x_2 x_3$ then $x_5 \rightarrow x_5 (s-1+sx_3)$ then $x_5 \rightarrow x_0 + x_5$

19/39

(日)((同))(日)((日))(日)

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

•
$$x_1 \rightarrow x_1 x_4$$
 then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$

•
$$\mathcal{F} \to x_1^2 x_4 \left(s x_2 \left(x_0 - x_5 \right) + |t| x_0 \left(x_3 - x_2 \right) \right)$$

 Let's look at one set of splittings to see how the method works in the kinematic region s > -t = 1

•
$$x_2 \to x_2 + x_3, x_0 \to x_0 + x_5$$

•
$$x_3 \rightarrow x_2 x_3$$
 then $x_5 \rightarrow x_5(s-1+sx_3)$ then $x_0 \rightarrow x_0+x_5$

•
$$\mathcal{F} \to x_0 x_1^2 x_2 x_4 (s - 1 + s x_3) =: \mathcal{F}_1^+$$

•
$$x_3 \to x_2 x_3$$
 then $x_5 \to x_5(s - 1 + sx_3)$ then $x_5 \to x_0 + x_5$
• $\mathcal{F} \to -x_1^2 x_2 x_4 x_5 (s - 1 + sx_3)$

19/39

イロト イポト イヨト イヨト

2-Loop Non-Planar Box

•
$$\mathcal{F} = -sx_1x_2x_5 - tx_0x_1x_3 + (s+t)x_0x_2x_4$$

•
$$x_1 \rightarrow x_1 x_4$$
 then $x_2 \rightarrow x_1 x_2$ then $x_0 \rightarrow x_0 x_1$

•
$$\mathcal{F} \to x_1^2 x_4 \left(s x_2 \left(x_0 - x_5 \right) + |t| x_0 \left(x_3 - x_2 \right) \right)$$

• Let's look at one set of splittings to see how the method works in the kinematic region s > -t = 1

•
$$x_2 \to x_2 + x_3, x_0 \to x_0 + x_5$$

•
$$x_3 \rightarrow x_2 x_3$$
 then $x_5 \rightarrow x_5(s-1+sx_3)$ then $x_0 \rightarrow x_0+x_5$

•
$$\mathcal{F} \to x_0 x_1^2 x_2 x_4 (s - 1 + s x_3) =: \mathcal{F}_1^+$$

•
$$x_3 \rightarrow x_2 x_3$$
 then $x_5 \rightarrow x_5(s-1+sx_3)$ then $x_5 \rightarrow x_0 + x_5$

•
$$\mathcal{F} \to -x_1^2 x_2 x_4 x_5 (s-1+sx_3) =: -\mathcal{F}_1^-$$

19/39

Massive Integrals

Outlook

2-Loop Non-Planar Box: Putting the Pieces Together

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

20/39
< ロ > < 同 > < 回 > < 回 > < □ > <

2-Loop Non-Planar Box: Putting the Pieces Together

• To cover all the space in this kinematic regime, we find we need 6 integrals

20/39

イロト イポト イヨト イヨト

2-Loop Non-Planar Box: Putting the Pieces Together

• To cover all the space in this kinematic regime, we find we need 6 integrals

2-Loop Non-Planar Box

$$I = (I_1^+ + I_2^+ + I_3^+) + (-1 - i\delta)^{-2-2\varepsilon} (I_1^- + I_2^- + I_3^-)$$

20/39

3

イロト イポト イヨト イヨト

2-Loop Non-Planar Box: Putting the Pieces Together

• To cover all the space in this kinematic regime, we find we need 6 integrals

2-Loop Non-Planar Box

$$I = (I_1^+ + I_2^+ + I_3^+) + (-1 - i\delta)^{-2-2\varepsilon} (I_1^- + I_2^- + I_3^-)$$

• Verified numerical result against the known analytic result \checkmark $_{\rm [Tausk 99]}$

20/39

3

《曰》《御》《曰》《曰》 [] [] []

2-Loop Non-Planar Box: Putting the Pieces Together

• To cover all the space in this kinematic regime, we find we need 6 integrals

2-Loop Non-Planar Box

$$I = (I_1^+ + I_2^+ + I_3^+) + (-1 - i\delta)^{-2-2\varepsilon} (I_1^- + I_2^- + I_3^-)$$

- Verified numerical result against the known analytic result \checkmark $_{\rm [Tausk 99]}$
- For the kinematic regime 0 < s < -t = 1, we find a different set of split integrals (still 6 in total)

2-Loop Non-Planar Box: Putting the Pieces Together

• To cover all the space in this kinematic regime, we find we need 6 integrals

2-Loop Non-Planar Box

$$I = (I_1^+ + I_2^+ + I_3^+) + (-1 - i\delta)^{-2-2\varepsilon} (I_1^- + I_2^- + I_3^-)$$

- Verified numerical result against the known analytic result \checkmark $_{\rm [Tausk 99]}$
- For the kinematic regime 0 < s < -t = 1, we find a different set of split integrals (still 6 in total)

$\delta\text{-}\mathsf{Function}$ Issue

Some rescalings can modify our $\delta\text{-function}$ in an impractical way for our numerical integration setup - let's avoid that!

20/39

Massive Integrals

Outlook 000

2-Loop Non-Planar Box: pySecDec Timing Comparison

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

21/39

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

2-Loop Non-Planar Box: pySecDec Timing Comparison

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

22/39

Thomas Stone

Introduction & Motivation

Massless Integrals

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

3-Loop Non-Planar Box

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

23/39

ъ

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

3-Loop Non-Planar Box

Diagram by Yao Ma

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

23/39

ъ

Massive Integrals

Outlook 000

3-Loop Non-Planar Box

Diagram by Yao Ma

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

23/39

Massive Integrals

Outlook 000

3-Loop Non-Planar Box

Thomas Stone

Introduction & Motivation

Massless Integrals

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

3-Loop Non-Planar Box

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

24/39

Massive Integrals

イロト イポト イヨト イヨト

3-Loop Non-Planar Box

• By considering all permutations of hierarchies for the Feynman parameters and considering symmetry, we find 6 integrals

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

24/39

イロト イポト イヨト イヨト

3-Loop Non-Planar Box

- By considering all permutations of hierarchies for the Feynman parameters and considering symmetry, we find 6 integrals
- For the kinematic regime s > -t > 0, we find 2 of these integrals would usually require contour deformation

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・

3-Loop Non-Planar Box

- By considering all permutations of hierarchies for the Feynman parameters and considering symmetry, we find 6 integrals
- For the kinematic regime s > -t > 0, we find 2 of these integrals would usually require contour deformation

•
$$\mathcal{F}^{a} = x_{1}x_{3}x_{5}x_{7}\left[-sx_{0}x_{2}+|t|(x_{0}+x_{4})(x_{2}+x_{4})\right]$$

• $\mathcal{F}^{b} = x_{1}x_{3}x_{5}x_{7}\left[sx_{6}\left(x_{0}+x_{2}+x_{6}\right)-\left|t\right|\left(x_{0}+x_{6}\right)\left(x_{2}+x_{6}\right)\right]$

イロト イポト イヨト イヨト

3-Loop Non-Planar Box

- By considering all permutations of hierarchies for the Feynman parameters and considering symmetry, we find 6 integrals
- For the kinematic regime s > -t > 0, we find 2 of these integrals would usually require contour deformation

•
$$\mathcal{F}^{a} = x_{1}x_{3}x_{5}x_{7}\left[-sx_{0}x_{2}+|t|(x_{0}+x_{4})(x_{2}+x_{4})\right]$$

•
$$\mathcal{F}^{b} = x_{1}x_{3}x_{5}x_{7} \left[sx_{6} \left(x_{0} + x_{2} + x_{6} \right) - \left| t \right| \left(x_{0} + x_{6} \right) \left(x_{2} + x_{6} \right) \right]$$

• Through a more involved combination of splits and rescalings, we can express each of these integrals in terms of 4 others

・ ロ ト ・ 同 ト ・ 国 ト ・ 国 ト ・

3-Loop Non-Planar Box

- By considering all permutations of hierarchies for the Feynman parameters and considering symmetry, we find 6 integrals
- For the kinematic regime s > -t > 0, we find 2 of these integrals would usually require contour deformation

•
$$\mathcal{F}^{a} = x_{1}x_{3}x_{5}x_{7}\left[-sx_{0}x_{2}+|t|(x_{0}+x_{4})(x_{2}+x_{4})\right]$$

•
$$\mathcal{F}^{b} = x_{1}x_{3}x_{5}x_{7} [sx_{6}(x_{0} + x_{2} + x_{6}) - |t|(x_{0} + x_{6})(x_{2} + x_{6})]$$

- Through a more involved combination of splits and rescalings, we can express each of these integrals in terms of 4 others
- This gives us 12 integrals to compute, none of which require contour deformation!

24/39

ъ

Massive Integrals

Outlook

3-Loop Non-Planar Box: Putting the Pieces Together

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

25/39

イロト イポト イヨト イヨト

3-Loop Non-Planar Box: Putting the Pieces Together

3-Loop Non-Planar Box

$$I = \sum_{n_{+}=1}^{8} I_{n_{+}}^{+} + (-1 - i\delta)^{-2-3\varepsilon} \sum_{n_{-}=1}^{4} I_{n_{-}}^{-}$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

25/39

イロト イポト イヨト イヨト

3-Loop Non-Planar Box: Putting the Pieces Together

3-Loop Non-Planar Box

$$I = \sum_{n_{+}=1}^{8} I_{n_{+}}^{+} + (-1 - i\delta)^{-2-3\varepsilon} \sum_{n_{-}=1}^{4} I_{n_{-}}^{-}$$

ullet Verified numerical result against the known analytic result \checkmark

[Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21]

25/39

3-Loop Non-Planar Box: Putting the Pieces Together

3-Loop Non-Planar Box

$$I = \sum_{n_{+}=1}^{8} I_{n_{+}}^{+} + (-1 - i\delta)^{-2-3\varepsilon} \sum_{n_{-}=1}^{4} I_{n_{-}}^{-}$$

- Verified numerical result against the known analytic result √ [Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21]
- Struggled to go beyond leading pole $(\frac{1}{\varepsilon^4})$ with contour deformation

・ロット (雪) (日) (日) (日)

3-Loop Non-Planar Box: Putting the Pieces Together

3-Loop Non-Planar Box

$$I = \sum_{n_{+}=1}^{8} I_{n_{+}}^{+} + (-1 - i\delta)^{-2-3\varepsilon} \sum_{n_{-}=1}^{4} I_{n_{-}}^{-}$$

- Verified numerical result against the known analytic result √ [Henn, Mistlberger, Smirnov, Wasser 20; Bargiela, Caola, von Manteuffel, Tancredi 21]
- Struggled to go beyond leading pole $(\frac{1}{\varepsilon^4})$ with contour deformation
- Avoiding contour deformation allowed us to go to higher orders (tried up to $\frac{1}{c^2}$)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3-Loop Non-Planar Box: pySecDec Precision Comparison

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

26/39

< ロ > < 同 > < 回 > < 回 > < □ > <

3-Loop Non-Planar Box: pySecDec Precision Comparison

Let's look at the leading pole for $I_a \& I_b$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

イロト 不得 トイヨト イヨト 二日

3-Loop Non-Planar Box: pySecDec Precision Comparison

Let's look at the leading pole for $I_a \& I_b$

 I_a & I_b (s = 1, t = -1/5) after $\mathcal{O}(\mathsf{mins})$ with pySecDec

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

3-Loop Non-Planar Box: pySecDec Precision Comparison

Let's look at the leading pole for $I_a \& I_b$

$I_a \& I_b \ (s = 1, t = -1/5)$ after $\mathcal{O}(\text{mins})$ with pySecDec

$$\begin{split} I_a^{\rm CD} &= \varepsilon^{-4} \left[(18.5195704502 - 15.707988011i) \pm (5.897 * 10^{-5} + 5.897 * 10^{-5}i) \right] + \ldots \\ I_a^{\rm NOCD} &= \varepsilon^{-4} \left[(18.51948920208488 - 15.70796326794897i) \pm (4.032 * 10^{-11} + 4.592 * 10^{-11}i) \right] + \ldots \end{split}$$

3-Loop Non-Planar Box: pySecDec Precision Comparison

Let's look at the leading pole for $I_a \& I_b$

$I_a \& I_b \ (s = 1, t = -1/5)$ after $\mathcal{O}(\text{mins})$ with pySecDec

$$\begin{split} & I_a^{\text{CD}} = \varepsilon^{-4} \left[(18.5195704502 - 15.707988011i) \pm (5.897 * 10^{-5} + 5.897 * 10^{-5}i) \right] + \dots \\ & I_a^{\text{NOCD}} = \varepsilon^{-4} \left[(18.51948920208488 - 15.70796326794897i) \pm (4.032 * 10^{-11} + 4.592 * 10^{-11}i) \right] + \dots \\ & I_b^{\text{CD}} = \varepsilon^{-4} \left[(12.7432949988 - 23.561968275i) \pm (1.605 * 10^{-5} + 1.415 * 10^{-5}i) \right] + \dots \\ & I_b^{\text{NOCD}} = \varepsilon^{-4} \left[(12.7432649721394 - 23.5619449018131i) \pm (4.125 * 10^{-11} + 6.919 * 10^{-11}i) \right] + \dots \end{split}$$

・ロット (雪) (日) (日) (日)

3-Loop Non-Planar Box: pySecDec Precision Comparison

Let's look at the leading pole for $I_a \& I_b$

$I_a \& I_b \ (s = 1, t = -1/5)$ after $\mathcal{O}(\text{mins})$ with pySecDec

$$\begin{split} & I_a^{\text{CD}} = \varepsilon^{-4} \left[(18.5195704502 - 15.707988011i) \pm (5.897 * 10^{-5} + 5.897 * 10^{-5}i) \right] + \dots \\ & I_a^{\text{NOCD}} = \varepsilon^{-4} \left[(18.51948920208488 - 15.70796326794897i) \pm (4.032 * 10^{-11} + 4.592 * 10^{-11}i) \right] + \dots \\ & I_b^{\text{CD}} = \varepsilon^{-4} \left[(12.7432949988 - 23.561968275i) \pm (1.605 * 10^{-5} + 1.415 * 10^{-5}i) \right] + \dots \\ & I_b^{\text{NOCD}} = \varepsilon^{-4} \left[(12.7432649721394 - 23.5619449018131i) \pm (4.125 * 10^{-11} + 6.919 * 10^{-11}i) \right] + \dots \end{split}$$

What about the full result?

Let's look at the leading pole for $I_a \& I_b$

$I_a \& I_b \ (s = 1, t = -1/5)$ after $\mathcal{O}(\text{mins})$ with pySecDec

$$\begin{split} &I_a^{\text{CD}} = \varepsilon^{-4} \left[(18.5195704502 - 15.707988011i) \pm (5.897 * 10^{-5} + 5.897 * 10^{-5}i) \right] + \dots \\ &I_a^{\text{NOCD}} = \varepsilon^{-4} \left[(18.51948920208488 - 15.70796326794897i) \pm (4.032 * 10^{-11} + 4.592 * 10^{-11}i) \right] + \dots \\ &I_b^{\text{CD}} = \varepsilon^{-4} \left[(12.7432949988 - 23.561968275i) \pm (1.605 * 10^{-5} + 1.415 * 10^{-5}i) \right] + \dots \\ &I_b^{\text{NOCD}} = \varepsilon^{-4} \left[(12.74326469721394 - 23.5619449018131i) \pm (4.125 * 10^{-11} + 6.919 * 10^{-11}i) \right] + \dots \end{split}$$

What about the full result?

I(s = 1, t = -1/5) after $\mathcal{O}(\mathsf{mins})$ with pySecDec

26/39

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで…

Let's look at the leading pole for $I_a \& I_b$

$I_a \& I_b \ (s = 1, t = -1/5)$ after $\mathcal{O}(\text{mins})$ with pySecDec

$$\begin{split} & I_a^{\text{CD}} = \varepsilon^{-4} \left[(18.5195704502 - 15.707988011i) \pm (5.897 * 10^{-5} + 5.897 * 10^{-5}i) \right] + \dots \\ & I_a^{\text{NOCD}} = \varepsilon^{-4} \left[(18.51948920208488 - 15.70796326794897i) \pm (4.032 * 10^{-11} + 4.592 * 10^{-11}i) \right] + \dots \\ & I_b^{\text{CD}} = \varepsilon^{-4} \left[(12.7432949988 - 23.561968275i) \pm (1.605 * 10^{-5} + 1.415 * 10^{-5}i) \right] + \dots \\ & I_b^{\text{NOCD}} = \varepsilon^{-4} \left[(12.74326469721394 - 23.5619449018131i) \pm (4.125 * 10^{-11} + 6.919 * 10^{-11}i) \right] + \dots \end{split}$$

What about the full result?

I(s = 1, t = -1/5) after $\mathcal{O}(mins)$ with pySecDec

 $I^{\text{CD}} = \varepsilon^{-4} [8.34055 - 52.3608i] + \mathcal{O} (\varepsilon^{-3})$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

26/39

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで…

Let's look at the leading pole for $I_a \& I_b$

$I_a \& I_b \ (s = 1, t = -1/5)$ after $\mathcal{O}(\text{mins})$ with pySecDec

$$\begin{split} &I_a^{\text{CD}} = \varepsilon^{-4} \left[(18.5195704502 - 15.707988011i) \pm (5.897 * 10^{-5} + 5.897 * 10^{-5}i) \right] + \dots \\ &I_a^{\text{NOCD}} = \varepsilon^{-4} \left[(18.51948920208488 - 15.70796326794897i) \pm (4.032 * 10^{-11} + 4.592 * 10^{-11}i) \right] + \dots \\ &I_b^{\text{CD}} = \varepsilon^{-4} \left[(12.7432949988 - 23.561968275i) \pm (1.605 * 10^{-5} + 1.415 * 10^{-5}i) \right] + \dots \\ &I_b^{\text{NOCD}} = \varepsilon^{-4} \left[(12.74326469721394 - 23.5619449018131i) \pm (4.125 * 10^{-11} + 6.919 * 10^{-11}i) \right] + \dots \end{split}$$

What about the full result?

I (s = 1, t = -1/5) after \mathcal{O} (mins) with pySecDec

$$\begin{split} I^{\text{CD}} &= \varepsilon^{-4} \left[8.340 \textbf{55} - 52.36 \textbf{08} i \right] + \mathcal{O} \left(\varepsilon^{-3} \right) \\ I^{\text{NOCD}} &= \varepsilon^{-4} \left[8.3400403920 \textbf{28} - 52.35987755983 \textbf{47} i \right] + \mathcal{O} \left(\varepsilon^{-3} \right) \end{split}$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

26/39

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで…

Let's look at the leading pole for $I_a \& I_b$

$I_a \& I_b \ (s = 1, t = -1/5)$ after $\mathcal{O}(\text{mins})$ with pySecDec

$$\begin{split} I_a^{\text{CD}} &= \varepsilon^{-4} \left[(18.5195704502 - 15.707988011i) \pm (5.897 * 10^{-5} + 5.897 * 10^{-5}i) \right] + \dots \\ I_a^{\text{NOCD}} &= \varepsilon^{-4} \left[(18.51948920208488 - 15.70796326794897i) \pm (4.032 * 10^{-11} + 4.592 * 10^{-11}i) \right] + \dots \\ I_b^{\text{CD}} &= \varepsilon^{-4} \left[(12.7432949988 - 23.561968275i) \pm (1.605 * 10^{-5} + 1.415 * 10^{-5}i) \right] + \dots \\ I_b^{\text{NOCD}} &= \varepsilon^{-4} \left[(12.74326469721394 - 23.5619449018131i) \pm (4.125 * 10^{-11} + 6.919 * 10^{-11}i) \right] + \dots \end{split}$$

What about the full result?

$$I(s = 1, t = -1/5)$$
 after $\mathcal{O}(\mathsf{mins})$ with pySecDec

$$I^{\text{CD}} = \varepsilon^{-4} [8.34055 - 52.3608i] + \mathcal{O} (\varepsilon^{-3})$$
$$I^{\text{NOCD}} = \varepsilon^{-4} [8.340040392028 - 52.3598775598347i] + \mathcal{O} (\varepsilon^{-3})$$

 $I_{\text{analytic}} = \varepsilon^{-4} \left[8.34004039223768 - 52.35987755984493 i \right] + \mathcal{O} \left(\varepsilon^{-3} \right)$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 26/39

Massive Integrals

Outlook 000

3-Loop Non-Planar Box: pySecDec Timing Comparison

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

27/39

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

3-Loop Non-Planar Box: pySecDec Timing Comparison

27/39
Massive Integrals

Outlook 000

3-Loop Non-Planar Box: pySecDec Timing

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

28/39

Massive Integrals

Outlook 000

3-Loop Non-Planar Box: pySecDec Timing

28/39

Massive Integrals

Outlook 000

Table of Contents

Introduction & Motivation

- Massless Integrals
 1-Loop Off-Shell Box
 2-Loop Non-Planar Box
 - 3-Loop Non-Planar Box
- Massive IntegralsMassive Bubble
 - Massive Triangle

4 Outlook

29/39

Massive Integrals 0●000000

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

Massive Integrals

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

30/39

Massive Integrals

Massive Integrals

 Integrals with massive internal propagators appear in a variety of phenomenologically-relevant amplitudes

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

30/39

イロト イポト イヨト イヨト

Massive Integrals

- Integrals with massive internal propagators appear in a variety of phenomenologically-relevant amplitudes
- Often no known analytic solution \Rightarrow numerical methods essential

30/39

イロト イポト イヨト イヨト

Massive Integrals

- Integrals with massive internal propagators appear in a variety of phenomenologically-relevant amplitudes
- Often no known analytic solution \Rightarrow numerical methods essential
- Does the method extends to this class of integrals?

30/39

Massive Integrals

イロト イポト イヨト イヨト

Massive Integrals

- Integrals with massive internal propagators appear in a variety of phenomenologically-relevant amplitudes
- Often no known analytic solution \Rightarrow numerical methods essential
- Does the method extends to this class of integrals?

${\mathcal F}$ for Massive Integrals

$$\mathcal{F}(\mathbf{x}, \mathbf{s}) = \mathcal{F}_0(\mathbf{x}, \mathbf{s})$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

30/39

Massive Integrals

イロト イポト イヨト イヨト

Massive Integrals

- Integrals with massive internal propagators appear in a variety of phenomenologically-relevant amplitudes
- Often no known analytic solution \Rightarrow numerical methods essential
- Does the method extends to this class of integrals?

${\mathcal F}$ for Massive Integrals

$$\mathcal{F}(\mathbf{x}, \mathbf{s}) = \mathcal{F}_{\mathbf{0}}(\mathbf{x}, \mathbf{s}) + \mathcal{U}(\mathbf{x}) \sum_{j=1}^{N} m_{j}^{2} x_{j}$$

30/39

Massive Integrals

イロト イポト イヨト イヨト

Massive Integrals

- Integrals with massive internal propagators appear in a variety of phenomenologically-relevant amplitudes
- Often no known analytic solution \Rightarrow numerical methods essential
- Does the method extends to this class of integrals?

${\mathcal F}$ for Massive Integrals

$$\mathcal{F}(\mathbf{x}, \mathbf{s}) = \mathcal{F}_{\mathbf{0}}(\mathbf{x}, \mathbf{s}) + \mathcal{U}(\mathbf{x}) \sum_{j=1}^{N} m_{j}^{2} x_{j}$$

• x_j can now appear quadratically in \mathcal{F} due to new term

30/39

3

Massive Integrals

イロト イポト イヨト イヨト

Massive Integrals

- Integrals with massive internal propagators appear in a variety of phenomenologically-relevant amplitudes
- Often no known analytic solution \Rightarrow numerical methods essential
- Does the method extends to this class of integrals?

${\mathcal F}$ for Massive Integrals

$$\mathcal{F}(\mathbf{x}, \mathbf{s}) = \mathcal{F}_{\mathbf{0}}(\mathbf{x}, \mathbf{s}) + \mathcal{U}(\mathbf{x}) \sum_{j=1}^{N} m_{j}^{2} x_{j}$$

- x_j can now appear quadratically in \mathcal{F} due to new term
- Viable transformations difficult even for trivial integrals

30/39

3

(日)

Massive Integrals

- Integrals with massive internal propagators appear in a variety of phenomenologically-relevant amplitudes
- Often no known analytic solution \Rightarrow numerical methods essential
- Does the method extends to this class of integrals?

${\mathcal F}$ for Massive Integrals

$$\mathcal{F}(\mathbf{x}, \mathbf{s}) = \mathcal{F}_{\mathbf{0}}(\mathbf{x}, \mathbf{s}) + \mathcal{U}(\mathbf{x}) \sum_{j=1}^{N} m_{j}^{2} x_{j}$$

- x_j can now appear quadratically in \mathcal{F} due to new term
- Viable transformations difficult even for trivial integrals
- Can we use geometry to guide us in the right direction?

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

Massive Bubble

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

31/39

æ

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

Massive Bubble

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

31/39

Massive Integrals

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Outlook 000

Massive Bubble

• $\mathcal{F} = -p^2 x_1 x_2$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

31/39

э.

Massive Integrals

Outlook 000

Massive Bubble

• $\mathcal{F} = -p^2 x_1 x_2 + (x_1 + x_2) \left(\frac{m_1^2 x_1 + m_2^2 x_2}{m_1^2 x_1 + m_2^2 x_2} \right)$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

31/39

3

Massive Integrals

Outlook 000

Massive Bubble

• $\mathcal{F} = -p^2 x_1 x_2 + (x_1 + x_2) \left(\frac{m_1^2 x_1 + m_2^2 x_2}{m_1^2 - (m_1 + m_2)^2} \right)$ • Define $\beta^2 := \frac{p^2 - (m_1 + m_2)^2}{p^2 - (m_1 - m_2)^2} \in [0, 1)$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

31/39

Massive Integrals

Outlook 000

Massive Bubble

- $\mathcal{F} = -p^2 x_1 x_2 + (x_1 + x_2) \left(\frac{m_1^2 x_1 + m_2^2 x_2}{m_1^2 x_1 + m_2^2 x_2} \right)$
- Define $\beta^2 := \frac{p^2 (m_1 + m_2)^2}{p^2 (m_1 m_2)^2} \in [0, 1)$
- Scale out dimension of \mathcal{F} via $x_i \rightarrow rac{x_i}{m_i}$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

31/39

э.

Massive Integrals

Outlook 000

Massive Bubble

• $\mathcal{F} = -p^2 x_1 x_2 + (x_1 + x_2) \left(\frac{m_1^2 x_1 + m_2^2 x_2}{m_1^2 - (m_1 - m_2)^2} \in [0, 1) \right)$ • Define $\beta^2 := \frac{p^2 - (m_1 + m_2)^2}{p^2 - (m_1 - m_2)^2} \in [0, 1)$ • Scale out dimension of \mathcal{F} via $x_i \to \frac{x_i}{m_i}$

$$\mathcal{F}
ightarrow \widetilde{\mathcal{F}} = x_1^2 + x_2^2 - 2rac{1+eta^2}{1-eta^2}x_1x_2$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

31/39

3

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Massive Bubble

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

32/39

Massive Integrals

Massive Bubble

 $\bullet\,$ Let's consider the variety of $\widetilde{\mathcal{F}}$

・ロト ・四ト ・ヨト ・ヨト

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

32/39

Massive Integrals

Massive Bubble

- $\bullet\,$ Let's consider the variety of $\widetilde{\mathcal{F}}$
- 3 regions \Rightarrow 3 integrals

・ロト ・ 同ト ・ ヨト ・ ヨト

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

32/39

Massive Integrals

Outlook 000

Massive Bubble

- $\bullet\,$ Let's consider the variety of $\widetilde{\mathcal{F}}$
- 3 regions \Rightarrow 3 integrals

• 2 positive regions, 1 negative region

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

32/39

Massive Integrals

Massive Bubble

- $\bullet\,$ Let's consider the variety of $\widetilde{\mathcal{F}}$
- 3 regions \Rightarrow 3 integrals
- 2 positive regions, 1 negative region

Massive Bubble

$$I = I_1^+ + I_2^+ + (-1 - i\delta)^{-\varepsilon} I_1^-$$

< ロ > < 同 > < 回 > < 回 > < □ > <

32/39

Massive Integrals

Massive Bubble

- Let's consider the variety of $\widetilde{\mathcal{F}}$
- 3 regions \Rightarrow 3 integrals
- 2 positive regions, 1 negative region

Massive Bubble

$$I = I_1^+ + I_2^+ + (-1 - i\delta)^{-\varepsilon} I_1^-$$

• Construct transformations which directly send the variety to the integration boundary

< ロ > < 同 > < 回 > < 回 >

32/39

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

Massive Bubble

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

33/39

æ

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Massive Bubble

• The solutions to
$$\widetilde{\mathcal{F}} = 0$$
 are $x_2 = \frac{1+\beta}{1-\beta}x_1$ and $x_2 = \frac{1-\beta}{1+\beta}x_1$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

33/39

Massive Integrals

Massive Bubble

- The solutions to $\widetilde{\mathcal{F}}=0$ are $x_2=rac{1+eta}{1-eta}x_1$ and $x_2=rac{1-eta}{1+eta}x_1$
- For region I, we demand the y_2 -axis coincides with the x_2 -axis and the y_1 -axis coincides with the solution line $x_2 = \frac{1+\beta}{1-\beta}x_1$

33/39

Massive Integrals

Massive Bubble

- The solutions to $\widetilde{\mathcal{F}} = 0$ are $x_2 = rac{1+eta}{1-eta} x_1$ and $x_2 = rac{1-eta}{1+eta} x_1$
- For region I, we demand the y_2 -axis coincides with the x_2 -axis and the y_1 -axis coincides with the solution line $x_2 = \frac{1+\beta}{1-\beta}x_1$
- Along with the constraint that points within region I get mapped to the positive quadrant in the new y_i variables, this uniquely defines the transformation:

33/39

Massive Integrals

Massive Bubble

- The solutions to $\widetilde{\mathcal{F}}=0$ are $x_2=rac{1+eta}{1-eta}x_1$ and $x_2=rac{1-eta}{1+eta}x_1$
- For region I, we demand the y_2 -axis coincides with the x_2 -axis and the y_1 -axis coincides with the solution line $x_2 = \frac{1+\beta}{1-\beta}x_1$
- Along with the constraint that points within region I get mapped to the positive quadrant in the new y_i variables, this uniquely defines the transformation:

$$y_1 \stackrel{!}{=} x_1, y_2 \stackrel{!}{=} x_2 - \frac{1+\beta}{1-\beta}x_1 \Rightarrow x_1 \rightarrow y_1, x_2 \rightarrow y_2 + \frac{1+\beta}{1-\beta}y_1$$

33/39

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Massive Bubble

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

34/39

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

Massive Bubble

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

34/39

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

Massive Bubble

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

34/39

Massive Integrals

Outlook

Massive Bubble

 $\widetilde{\mathcal{F}}_1^+ = y_2 \left(y_2 + rac{4eta}{1-eta^2} y_1
ight)$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

34/39

Massive Integrals

Outlook 000

Massive Bubble

 $\widetilde{\mathcal{F}}_1^+ = y_2 \left(y_2 + rac{4eta}{1-eta^2} y_1
ight)$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

34/39

Massive Integrals

Outlook

Massive Bubble

 $\widetilde{\mathcal{F}}_1^+ = y_2 \left(y_2 + rac{4eta}{1-eta^2} y_1
ight)$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

34/39
Massive Integrals

Outlook 000

Massive Bubble

 $\widetilde{\mathcal{F}}_1^+ = y_2 \left(y_2 + rac{4\beta}{1-\beta^2} y_1
ight)$

 $\widetilde{\mathcal{F}}_1^- = rac{4\beta}{1-\beta^2} y_1 y_2$

・ロト (四) () (日) (日)

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

34/39

Massive Integrals

Outlook 000

Massive Bubble

 $\widetilde{\mathcal{F}}_1^+ = y_2 \left(y_2 + rac{4\beta}{1-\beta^2} y_1
ight)$

 $\widetilde{\mathcal{F}}_1^- = rac{4\beta}{1-\beta^2} y_1 y_2$

(日)

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Massive Integrals

Outlook 000

Massive Bubble

 $\widetilde{\mathcal{F}}_1^+ = y_2 \left(y_2 + rac{4\beta}{1-\beta^2} y_1
ight)$

 $\widetilde{\mathcal{F}}_1^- = rac{4\beta}{1-\beta^2} y_1 y_2$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

Massive Integrals

Outlook 000

Massive Bubble

 $\widetilde{\mathcal{F}}_1^+ = y_2 \left(y_2 + \frac{4\beta}{1-\beta^2} y_1 \right)$

 $\widetilde{\mathcal{F}}_1^- = \frac{4\beta}{1-\beta^2} y_1 y_2$

 $\widetilde{\mathcal{F}}_2^+ = rac{y_1\left(4eta y_2 + (1+eta)^2 y_1
ight)}{1-eta^2}$

・ロット (雪) (日) (日) (日)

Thomas Stone

Massive Integrals

Outlook

Massive Bubble

 $\widetilde{\mathcal{F}}_1^+ = y_2 \left(y_2 + rac{4\beta}{1-\beta^2} y_1
ight)$

 $\widetilde{\mathcal{F}}_1^- = \frac{4\beta}{1-\beta^2} y_1 y_2$

 $\widetilde{\mathcal{F}}_2^+ = \frac{y_1\left(4\beta y_2 + (1+\beta)^2 y_1\right)}{1-\beta^2}$

Verified result numerically & analytically <

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

Introduction & Motivation	Massless Integrals	Massive Integrals	Outlook
000000000	000000000000000	○○○○○●○	000

・ロト・日本・モン・モン・モックへで 35/39

Massive Integrals

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

Massive Triangle

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

35/39

Massive Integrals

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・

Outlook

Massive Triangle

$$\mathcal{F} = -p_3^2 x_0 x_2$$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

35/39

Massive Integrals

Outlook

Massive Triangle

 $\mathcal{F} = -p_3^2 x_0 x_2 + (x_0 + x_1 + x_2) m^2 x_0$

イロト イポト イヨト イヨト

Thomas Stone

35/39

Introduction	Motivation

Massive Integrals

Outlook

Massive Triangle

$$\mathcal{F} = -p_3^2 x_0 x_2 + (x_0 + x_1 + x_2) \, \mathbf{m}^2 x_0$$

(日)

Can solve this using rescalings and shifts as before (verified \checkmark)

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

35/39

Introduction	Motivation

Massive Integrals

Outlook

Massive Triangle

$$\mathcal{F} = -p_3^2 x_0 x_2 + (x_0 + x_1 + x_2) \, \mathbf{m}^2 x_0$$

Can solve this using rescalings and shifts as before (verified \checkmark)

Massive Triangle $I = I_1^+ + I_2^+ + (-1 - i\delta)^{-1-arepsilon} I_1^-$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

Massive Integrals

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

Massive Triangle

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

36/39

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook 000

Massive Triangle

36/39

Massive Integrals

Outlook 000

Massive Triangle

• Visualising variety of \mathcal{F} suggests 2 regions

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

36/39

Massive Integrals

Outlook 000

Massive Triangle

• Visualising variety of \mathcal{F} suggests 2 regions $\stackrel{?}{\Rightarrow} I = I^+ + (-1 - i\delta)^{-1-\varepsilon} I^-$

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

36/39

Massive Integrals

Outlook 000

Massive Triangle

- Visualising variety of \mathcal{F} suggests 2 regions $\stackrel{?}{\Rightarrow} I = I^+ + (-1 - i\delta)^{-1-\varepsilon} I^-$
- Can geometric picture tell us the minimum number of integrals we need? (i.e. #Regions ? #Integrals)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

36/39

Massive Integrals

Outlook 000

Massive Triangle

- Visualising variety of \mathcal{F} suggests 2 regions $\stackrel{?}{\Rightarrow} I = I^+ + (-1 - i\delta)^{-1-\varepsilon} I^-$
- Can geometric picture tell us the minimum number of integrals we need? (i.e. <u>#Regions</u> [?] <u>#Integrals</u>)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

• Subject of current work

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

36/39

Massive Integrals

< ロ > < 同 > < 回 > < 回 > :

Outlook •00

Table of Contents

Introduction & Motivation

- Massless Integrals
 1-Loop Off-Shell Box
 2-Loop Non-Planar Box
 - 3-Loop Non-Planar Box
- Massive Integrals
 Massive Bubble
 Massive Triangle

④ Outlook

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

37/39

Introduction	Motivation

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook

Outlook

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

38/39

Introduction	Motivation

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook

Outlook

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

38/39

Introduction	Motivation

Massive Integral

Outlook

Outlook

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

38/39

Introduction	Motivation

Massive Integral

Outlook 000

Outlook

Introduction	Motivation

Massive Integrals

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outlook

Outlook

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Thomas Stone

39/39

Introduction	Motivation

Massive Integrals

< ロ > < 同 > < 回 > < 回 > < □ > <

Outlook

• Can we use this geometric picture to move away from "arbitrary" shifts & rescalings and towards a general algorithm?

39/39

Introduction	Motivation

Massive Integrals

イロト イポト イヨト イヨト

Outlook

Outlook

- Can we use this geometric picture to move away from "arbitrary" shifts & rescalings and towards a general algorithm?
- Potential insight from algebraic geometry directly consider the variety of \mathcal{F} and computational tools for the resolution of singularities [Hironaka]

39/39

Introduction	Motivation

Massive Integrals

イロト イポト イヨト イヨト

Outlook

- Can we use this geometric picture to move away from "arbitrary" shifts & rescalings and towards a general algorithm?
- Potential insight from algebraic geometry directly consider the variety of \mathcal{F} and computational tools for the resolution of singularities [Hironaka]
- Understanding 2-loop massive integrals could lead to **huge** time improvements

Introduction	Motivation

Massive Integrals

イロト イポト イヨト イヨト

Outlook

- Can we use this geometric picture to move away from "arbitrary" shifts & rescalings and towards a general algorithm?
- Potential insight from algebraic geometry directly consider the variety of \mathcal{F} and computational tools for the resolution of singularities [Hironaka]
- Understanding 2-loop massive integrals could lead to **huge** time improvements
- Applying method to multi-loop massless integrals could allow for (currently impossible) numerical cross-checks of analytic/semi-analytic results

Introduction		Motivation	

Massive Integrals

イロト イポト イヨト イヨト

Outlook

- Can we use this geometric picture to move away from "arbitrary" shifts & rescalings and towards a general algorithm?
- Potential insight from algebraic geometry directly consider the variety of \mathcal{F} and computational tools for the resolution of singularities [Hironaka]
- Understanding 2-loop massive integrals could lead to **huge** time improvements
- Applying method to multi-loop massless integrals could allow for (currently impossible) numerical cross-checks of analytic/semi-analytic results
- Look towards an implementation in numerical loop integration packages

39/39

Introduction		Motivation	

Massive Integrals

イロト イポト イヨト イヨト

Outlook

- Can we use this geometric picture to move away from "arbitrary" shifts & rescalings and towards a general algorithm?
- Potential insight from algebraic geometry directly consider the variety of \mathcal{F} and computational tools for the resolution of singularities [Hironaka]
- Understanding 2-loop massive integrals could lead to **huge** time improvements
- Applying method to multi-loop massless integrals could allow for (currently impossible) numerical cross-checks of analytic/semi-analytic results
- Look towards an implementation in numerical loop integration packages Thank you for listening!

39/39