Learning Feynman integrals from differential equations with neural networks

Simone Zoia

with Francesco Calisto, Ryan Moodie (arXiv:2312.02067)

Loops and Legs, 16th April 2024

Feynman integrals are important, really

Essential ingredients of perturbative computations \rightarrow particle phenomenology

Also: gravitational waves, cosmology, statistical mechanics, mathematics...

Many techniques, yet they remain a bottleneck

One of the most powerful methods: integrals = solutions to differential equations

$$
\frac{\partial}{\partial s} \overrightarrow{\mathrm{~F}}(s ; \epsilon)=A(s ; \epsilon) \cdot \overrightarrow{\mathrm{F}}(s ; \epsilon)
$$

How do we solve the DEs?

How do we solve tr Construct a neural network to approximate the solution

How do we solve tr Construct a neural network

 to approximate the solution

Method of differential equations

$$
\frac{\partial}{\partial s_{12}} \overrightarrow{\mathrm{~F}}(s ; \epsilon)=A_{s_{12}}(s ; \epsilon) \cdot \overrightarrow{\mathrm{F}}(s ; \epsilon)
$$

Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family

$$
\begin{aligned}
& \mathrm{I}_{\vec{a}}(s, t ; \epsilon)=\int \frac{\mathrm{d}^{D} k}{\mathrm{i} \pi^{D / 2}} \frac{1}{D_{1}^{a_{1}} \ldots D_{4}^{a_{4}}} D_{1}=k^{2} \\
& D_{2}=\left(k+p_{1}\right)^{2} \\
&\left\{\mathrm{I}_{\vec{a}}(s, t ; \epsilon) \mid \forall \vec{a} \in \mathbb{Z}^{4}\right\} D_{3}=\left(k+p_{1}+p_{2}\right)^{2} \\
& D_{4}=\left(k-p_{4}\right)^{2}
\end{aligned}
$$

Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family

$$
\begin{aligned}
& \mathrm{I}_{\vec{a}}(s, t ; \epsilon)=\int \frac{\mathrm{d}^{D} k}{\mathrm{i} \pi^{D / 2}} \frac{1}{D_{1}^{a_{1}} \ldots D_{4}^{a_{4}}} D_{1}=k^{2} \\
& D_{2}=\left(k+p_{1}\right)^{2} \\
&\left\{\mathrm{I}_{\vec{a}}(s, t ; \epsilon) \mid \forall \vec{a} \in \mathbb{Z}^{4}\right\} D_{3}=\left(k+p_{1}+p_{2}\right)^{2} \\
& D_{4}=\left(k-p_{4}\right)^{2}
\end{aligned}
$$

Identities among the $\mathrm{I}_{\vec{a}}$'s

e.g. Integration-By-Parts relations

Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family

$$
\begin{aligned}
& \mathrm{I}_{\vec{a}}(s, t ; \epsilon)=\int \frac{\mathrm{d}^{D} k}{\mathrm{i} \pi^{D / 2}} \frac{1}{D_{1}^{a_{1}} \ldots D_{4}^{a_{4}}} D_{1}=k^{2} \\
& D_{2}=\left(k+p_{1}\right)^{2} \\
&\left\{\mathrm{I}_{\vec{a}}(s, t ; \epsilon) \mid \forall \vec{a} \in \mathbb{Z}^{4}\right\} D_{3}=\left(k+p_{1}+p_{2}\right)^{2} \\
& D_{4}=\left(k-p_{4}\right)^{2}
\end{aligned}
$$

Identities among the $\mathrm{I}_{\vec{a}}$'s

e.g. Integration-By-Parts relations

Finite-dimensional basis:
\Rightarrow

Integrating by differentiating

Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000

$$
\begin{aligned}
\frac{\partial}{\partial s_{12}} \overrightarrow{\mathrm{~F}}(s ; \epsilon) & =\sum_{\vec{a}} c_{\vec{a}} \mathrm{I}_{\vec{a}} \quad \text { IBP reduction } \frac{\partial}{\partial s} \vec{F}(s, t ; \epsilon)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\frac{\epsilon}{s} & 0 \\
\frac{2(2 \epsilon-1)}{s t(s+t)} & \frac{2(1-2 \epsilon)}{s^{2}(s+t)}-\frac{s+t+\epsilon t}{s(s+t)}
\end{array}\right) \cdot \vec{F}(s, t ; \epsilon) \\
& =A_{s_{12}}(s ; \epsilon) \cdot \overrightarrow{\mathrm{F}}(s ; \epsilon)
\end{aligned}
$$

\Rightarrow System of 1 st order linear PDEs for the MIs $\overrightarrow{\mathrm{F}}$

How do we solve it?

$$
\overrightarrow{\mathrm{F}}(s ; \epsilon)=\sum_{w \geq w_{\min }} \epsilon^{w} \overrightarrow{\mathrm{~F}}^{(w)}(s)
$$

Analytic solution not always feasible

Choose Mls such that DEs take canonical form Henn 2013 No general algorithm!
Solution in terms of special functions

\rightarrowIn the most complicated cases, we lack the mathematical technology!

Growing interest for semi-numerical solution based on series expansions Moriello 2019

DiffExp Hidding 2020, SeaSyde Armadillo et al. 2022, AMFlow Ma, Liu 2022
: Very flexible
(:) Long evaluation times

Goals: flexibility + fast evaluation time

Can machine learning help to achieve this? Let's ask ChatGPT

```
(s) You
```

Hello ChatGPT! I have a system of first-order linear partial differential equations. I would like to solve it numerically using machine learning. What do you suggest? Please keep it short, it has to fit in a slide of my talk at Loops and Legs 2024 :)

ChatGPT

For solving first-order linear partial differential equations numerically using machine learning, consider employing neural network-based methods like Physics-Informed Neural Networks (PINNs) or Finite Element Neural Networks (FENN). These methods can efficiently approximate solutions while enforcing physical constraints. They've shown promise in various scientific computing tasks, including solving PDEs.
() 90 『

Just what we ended up using!

We should have asked ChatGPT rightaway...

Neural networks are universal function approximators

Hornik, Stinchcombe, White '89
Typical problem: approximate function $f(x)$ from large dataset of values $f\left(x_{i}\right)$

Neural networks are universal function approximators

Hornik, Stinchcombe, White '89
Typical problem: approximate function $f(x)$ from large dataset of values $f\left(x_{i}\right)$

Neural networks are universal function approximators

Hornik, Stinchcombe, White '89
Typical problem: approximate function $f(x)$ from large dataset of values $f\left(x_{i}\right)$

Neural networks are universal function approximators

Hornik, Stinchcombe, White '89
Typical problem: approximate function $f(x)$ from large dataset of values $f\left(x_{i}\right)$

Neural networks are universal function approximators

Hornik, Stinchcombe, White '89
Typical problem: approximate function $f(x)$ from large dataset of values $f\left(x_{i}\right)$

Neural networks are universal function approximators

Typical problem: approximate function $f(x)$ from large dataset of values $f\left(x_{i}\right)$

Neural networks are universal function approximators

Typical problem: approximate function $f(x)$ from large dataset of values $f\left(x_{i}\right)$

Optimisation problem: find weights θ such that a loss function is minimised

$$
L(\mathrm{D} ; \theta)=\frac{1}{N} \sum_{i=1}^{N}\left[f\left(x_{i}\right)-h\left(x_{i} ; \theta\right)\right]^{2}
$$

We don't have a large dataset...

What we have:

- Small dataset of values (at least 1), obtained numerically in other ways
E.g. AMFlow Liu, Ma $2022 \rightarrow$ Expensive evaluation, but very flexible
- Differential equations: $\frac{\mathrm{d} f(x)}{\mathrm{d} x}=A(x) f(x)$

Physics-informed deep learning

Raissi, Perdikaris, Karniadakis 2017
8 Idea: include the DEs in the loss function

$$
L(\mathrm{D} ; \theta)=\overline{\sum_{i}}\left[h\left(x_{i} ; \theta\right)-f\left(x_{i}\right)\right]^{2}+\overline{\sum_{j}}\left[\left.\frac{\mathrm{~d} h(x ; \theta)}{\mathrm{d} x}\right|_{x=x_{j}}-A\left(x_{j}\right) h\left(x_{j} ; \theta\right)\right]^{2}
$$

Derivatives of the NN computed with automatic differentiation Griewank, Walther 2008

Input: few boundary values + the analytic DEs

The canonical form of the DEs is not needed

We make mild assumptions to simplify the problem:

$$
\frac{\partial}{\partial v_{i}} \vec{F}(\vec{v} ; \epsilon)=A_{v_{i}}(\vec{v} ; \epsilon) \cdot \vec{F}(\vec{v} ; \epsilon) \quad \forall i=1, \ldots, n_{v} \quad \vec{v}: \text { kinematic variables }
$$

The canonical form of the DEs is not needed

We make mild assumptions to simplify the problem:

$$
\frac{\partial}{\partial v_{i}} \vec{F}(\vec{v} ; \epsilon)=A_{v_{i}}(\vec{v} ; \epsilon) \cdot \vec{F}(\vec{v} ; \epsilon) \quad \forall i=1, \ldots, n_{v} \quad \vec{v}: \text { kinematic variables }
$$

1. The matrices $A_{v_{i}}(\vec{v} ; \epsilon)$ are rational functions \Rightarrow Separate $\mathrm{Re} / \mathrm{lm}$ parts, only deal with real numbers

$$
\begin{aligned}
& \frac{\partial}{\partial v_{i}} \operatorname{Re}[\vec{F}(\vec{v} ; \epsilon)]=A_{v_{i}}(\vec{v} ; \epsilon) \cdot \operatorname{Re}[\vec{F}(\vec{v} ; \epsilon)] \\
& \frac{\partial}{\partial v_{i}} \operatorname{Im}[\vec{F}(\vec{v} ; \epsilon)]=A_{v_{i}}(\vec{v} ; \epsilon) \cdot \operatorname{Im}[\vec{F}(\vec{v} ; \epsilon)]
\end{aligned}
$$

The canonical form of the DEs is not needed

We make mild assumptions to simplify the problem:

$$
\frac{\partial}{\partial v_{i}} \vec{F}(\vec{v} ; \epsilon)=A_{v_{i}}(\vec{v} ; \epsilon) \cdot \vec{F}(\vec{v} ; \epsilon) \quad \forall i=1, \ldots, n_{v} \quad \vec{v}: \text { kinematic variables }
$$

1. The matrices $A_{v_{i}}(\vec{v} ; \epsilon)$ are rational functions \Rightarrow Separate $R e / l m$ parts, only deal with real numbers
2. The matrices $A_{v_{i}}(\vec{v} ; \epsilon)$ are finite at $\epsilon=0, \quad A_{v_{i}}(\vec{v} ; \epsilon)=\sum_{k=0}^{k_{\text {max }}} \epsilon^{k} A_{v_{i}}^{(k)}(\vec{v})$
\Rightarrow Simplifies the ϵ expansion of the solution $\quad \vec{F}(\vec{v} ; \epsilon)=\epsilon^{w^{*}} \sum_{w=0}^{w_{\text {max }}} \epsilon^{w} \vec{F}^{(w)}(\vec{v})$

Architecture

PyTorch

Dimensionless kinematic variables

Re or Im part of $\vec{F}^{(w)}$ up to a certain order in ϵ

In the examples we considered: 3/4 hidden layers, 32-256 nodes per layer

Our loss function in full glory

$$
\begin{gathered}
L_{\mathrm{b}}\left(\mathrm{D}_{\mathrm{b}}, \theta\right)=\sum_{\vec{x}^{(i)} \in \mathrm{D}_{\mathrm{b}}} \sum_{j=1}^{n_{F}} \sum_{w=0}^{w_{\text {max }}}\left[h_{j}^{(w)}\left(\vec{x}^{(i)} ; \theta\right)-g_{j}^{(w)}{ }_{\left.\left(\vec{x}^{(i)}\right)\right]^{2}} \quad \begin{array}{l}
\text { Either Re of Im part of } \\
\text { the master integrals }
\end{array}\right. \\
\text { Fixed small database of known values }
\end{gathered}
$$

$$
\begin{aligned}
& L_{\mathrm{DE}}\left(\mathrm{D}_{\mathrm{DE}}, \theta\right)= \\
& \quad \sum_{\vec{x}^{(i)} \in \mathrm{D}_{\mathrm{DE}}} \sum_{j=1}^{n_{F}} \sum_{l=1}^{n_{v}-1 w_{\max }} \sum_{w=0}^{\min \left(w, k_{\max }\right)} \partial_{\left.x_{l} h_{j}^{(w)}\left(\vec{x}^{(i)} ; \theta\right)-\sum_{k=0}^{n_{F}} \sum_{r=1}^{(k)} A_{x_{l}, j r}\left(\vec{x}^{(i)}\right) h_{r}^{(w-k)}\left(\vec{x}^{(i)} ; \theta\right)\right]^{2}} .
\end{aligned}
$$

Dynamic random sampling at each iteration

- Avoids over-fitting, no regularisation needed
- Validation can be done on the training dataset

Heavy crossed box

3 kinematic variables, 36 Mls

$$
\vec{v}=\left\{s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}, m^{2}\right\}
$$

Canonical DEs / analytic solution unavailable
Involves elliptic functions
von Manteuffel, Tancredi 2017; Xu, Yang 2019;
Wang, Wang, Xu, Xu, Yang 2021,
Görges, Nega, Tancredi, Wagner 2023; Ahmed,
Chaubey, Kaur, Maggio 2024
Full computation recently using generalised power series expansions (DiffExp)
Becchetti, Bonciani, Cieri, Coro, Ripani 2023
乙 Mls stripped of square roots $\rightarrow A_{v_{i}}(\vec{v} ; \epsilon)=\sum_{k=0}^{2} \epsilon^{k} A_{v_{i}}^{(k)}(\vec{v})$

Heavy crossed box: architecture

2 input variables (fix $m^{2}=1$)

Mls (Re or Im)

$$
\vec{F}(\vec{v} ; \epsilon)=\frac{1}{\epsilon^{4}} \sum_{w=0}^{4} \epsilon^{w} \vec{F}^{(w)}(\vec{v})
$$

Heavy crossed box: kinematic region

Never leave the chosen domain of
s channel: $s>-t>0 \wedge m^{2}>0 \longrightarrow$ analyticity domain, so analytic continuation is not required

We choose $s<\sqrt{10}$
Singularities of the solution

Cut near boundaries:
10% of largest value $(\sqrt{10})$
Boundary values at 10 random points, obtained with AMFlow Liu, Ma 2022

Heavy crossed box: training

Ensemble of 10 NNs
Iterations: 7.9×10^{4}

Time to train $1 \mathrm{NN}: 75 \mathrm{~min}$ (on a good laptop, GPU)

Use training metric for validation, as inputs for DE loss function are dynamically random sampled

Heavy crossed box: model performance

Comparison against testing dataset of 100 points (AMFlow)

Good and bad

Flatness of the performance with respect to

- Analytic complexity (ϵ orders, MI) within the same family
- Across different families

Instantaneous evaluation times

Good and bad

Flatness of the performance with respect to

- Analytic complexity (ϵ orders, MI) within the same family
- Across different families

Instantaneous evaluation times

As of now, low control over accuracy

We can estimate it (ensemble uncertainty, differential error), but as of now unclear how to increase it arbitrarily

Good and bad

Flatness of the performance with respect to

- Analytic complexity (ϵ orders, MI) within the same family
- Across different families

Instantaneous evaluation times

As of now, low control over accuracy

We can estimate it (ensemble uncertainty, differential error), but as of now unclear how to increase it arbitrarily

Good and bad

Flatness of the performance with respect to

- Analytic complexity (ϵ orders, MI) within the same family
- Across different families

Instantaneous evaluation times

As of now, low control over accuracy

We can estimate it (ensemble uncertainty, differential error), but as of now unclear how to increase it arbitrarily

Conclusion

New method to evaluate numerically Feynman integrals satisfying generic DEs using physics-informed deep learning

Proof-of-concept implementation can reach 1\% accuracy in non-trivial 2-loop examples

Much room for improvement!

Francesco Calisto, Ryan Moodie, Simone Zoia (arXiv:2312.02067)

Conclusion

New method to evaluate numerically Feynman integrals satisfying generic BEs using physics-informed deep learning

Proof-of-concept implementation can reach 1\% accuracy in non-trivial 2-loop examples

Much room for improvement!
Francesco Calisto, Ryan Moodie, Simone Zoia (arXiv:2312.02067)

Proof-of-concept implementation

GELU (Gaussian Error Linear Unit) activation function (nonzero and continuous 2nd-order derivatives)

Train with stochastic gradient descent (Adam optimiser)

Mini-batch training: iterations organised into epochs composed of small batches, taking a dynamic random sample of the inputs for each batch

- No need for regularisation to avoid overfitting
- Validation can be done on the training dataset

Integral family	box	one-mass double box	heavy crossed box	top double box
Inputs	1	2	2	2
Hidden layers	3×32	3×256	3×256	4×128
Outputs	15	90	180	99
Learning rate	10^{-2}	10^{-3}	10^{-3}	10^{-3}
Batch size	64	256	256	256
Boundary points	2	6	10	20
$c_{n_{v}}$	$s=10$	$s_{12}=2.5$	$m^{2}=1$	$m_{\mathrm{t}}^{2}=1$
Scale bound	-	-	$s \leq \sqrt{10}$	$s_{12} \leq 5$
Physical cut $(\%)$	10	10	10	10
Spurious cut (\%)	0	0	0	1

Summary of hyperparameters

Integral family	Final loss	Iterations	Time (minutes)
box	2.7×10^{-7}	2.5×10^{5}	16
one-mass double box	3.4×10^{-4}	1.1×10^{5}	53
heavy crossed box	1.4×10^{-5}	7.9×10^{4}	75
top double box	7.1×10^{-4}	5.2×10^{4}	32

Training statistics

Integral family	MEU	MDE	MAD	MMRD	MLR	Size
box	2.8×10^{-5}	3.6×10^{-4}	2.9×10^{-5}	2.2×10^{-5}	3.9×10^{-7}	10^{5}
one-mass DB	8.1×10^{-4}	1.1×10^{-2}	2.0×10^{-3}	1.1×10^{-2}	-2.8×10^{-4}	10^{5}
heavy CB	2.8×10^{-4}	2.8×10^{-3}	1.6×10^{-3}	7.3×10^{-3}	-4.5×10^{-4}	10^{2}
top DB	1.9×10^{-4}	1.7×10^{-3}	9.0×10^{-4}	3.9×10^{-3}	1.8×10^{-4}	10^{2}

Uncertainty and testing errors

