
Simone Zoia

Learning Feynman integrals from
differential equations with neural networks

Loops and Legs, 16th April 2024

with Francesco Calisto, Ryan Moodie (arXiv:2312.02067)

https://arxiv.org/abs/2312.02067

Feynman integrals are important, really

2

Essential ingredients of perturbative computations particle phenomenology

Also: gravitational waves, cosmology, statistical mechanics,
mathematics…

Many techniques, yet they remain a bottleneck

One of the most powerful methods: integrals = solutions to differential equations

→

This is why we have

“loops” in Loops and Legs!

∂
∂s

⃗F (s; ϵ) = A (s; ϵ) ⋅ ⃗F (s; ϵ)

3

NumericalAnalytical

❓

How do we solve the DEs?

3

NumericalAnalytical

How do we solve the DEs?Construct a neural network
to approximate the solution

3

NumericalAnalytical

How do we solve the DEs?Construct a neural network
to approximate the solution

Disclaimer: just the first steps!

“The key to happiness
is low expectations”

Method of differential equations

4

∂
∂s12

⃗F (s; ϵ) = As12
(s; ϵ) ⋅ ⃗F (s; ϵ)

Integral families and master integrals

5

Scalar Feynman integrals with the same propagator structure = integral family

I ⃗a(s, t; ϵ) = ∫
dDk
iπD/2

1
Da1

1 …Da4
4

D1 = k2

D2 = (k + p1)2

D3 = (k + p1 + p2)2

D4 = (k − p4)2{I ⃗a(s, t; ϵ) |∀ ⃗a ∈ ℤ4}

Integral families and master integrals

5

Scalar Feynman integrals with the same propagator structure = integral family

I ⃗a(s, t; ϵ) = ∫
dDk
iπD/2

1
Da1

1 …Da4
4

D1 = k2

D2 = (k + p1)2

D3 = (k + p1 + p2)2

D4 = (k − p4)2{I ⃗a(s, t; ϵ) |∀ ⃗a ∈ ℤ4}

Identities among the ’sI ⃗a

p =
3 − D

p2
×

Chetyrkin, Tkachov ’81; Laporta 2000

e.g. Integration-By-Parts relations

Integral families and master integrals

5

Scalar Feynman integrals with the same propagator structure = integral family

I ⃗a(s, t; ϵ) = ∫
dDk
iπD/2

1
Da1

1 …Da4
4

D1 = k2

D2 = (k + p1)2

D3 = (k + p1 + p2)2

D4 = (k − p4)2{I ⃗a(s, t; ϵ) |∀ ⃗a ∈ ℤ4}

Identities among the ’sI ⃗a

p =
3 − D

p2
×

Chetyrkin, Tkachov ’81; Laporta 2000

e.g. Integration-By-Parts relations

Finite-dimensional basis:
master integrals ⃗F (s, t; ϵ)

 ⇒

Integrating by differentiating

6

Barucchi, Ponzano ’73; Kotikov ’91; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000

∂
∂s12

⃗F (s; ϵ) = ∑⃗
a

c ⃗a I ⃗a

= As12
(s; ϵ) ⋅ ⃗F (s; ϵ)

IBP reduction

 System of 1st order linear PDEs for the MIs ⇒ ⃗F

How do we solve it? ⃗F (s; ϵ) = ∑
w≥wmin

ϵw ⃗F (w)(s)

Choose MIs such that DEs take canonical form

Solution in terms of special functions

Analytic solution not always feasible

7

Henn 2013

Moriello 2019

DiffExp Hidding 2020, SeaSyde Armadillo et al. 2022,
AMFlow Ma, Liu 2022

Growing interest for semi-numerical solution
based on series expansions

😄 Very flexible
🙁 Long evaluation times

No general algorithm!

Logs

Classical polylogs

MPLs

Elliptic MPLs
???

In the most complicated cases, we lack
the mathematical technology!

8

Goals: flexibility + fast evaluation time

Slide idea from Melissa van Beekveld

Can machine learning help to achieve this? Let’s ask ChatGPT

Just what we ended
up using!

We should have
asked ChatGPT
rightaway…

Neural networks are universal function approximators

9

Hornik, Stinchcombe, White ’89

Typical problem: approximate function from large dataset of values f(x) f(xi)

Neural networks are universal function approximators

9

Hornik, Stinchcombe, White ’89

Typical problem: approximate function from large dataset of values f(x) f(xi)

Neural networks are universal function approximators

9

Hornik, Stinchcombe, White ’89

Typical problem: approximate function from large dataset of values f(x) f(xi)

Input layer

x

Neural networks are universal function approximators

9

Hornik, Stinchcombe, White ’89

Typical problem: approximate function from large dataset of values f(x) f(xi)

Input layer

x

Weights θ

θ1
θ2θ3

Neural networks are universal function approximators

9

Hornik, Stinchcombe, White ’89

Typical problem: approximate function from large dataset of values f(x) f(xi)

Input layer

x

Weights θ

θ1
θ2θ3

Hidden layers

Activation function

Neural networks are universal function approximators

9

Hornik, Stinchcombe, White ’89

Typical problem: approximate function from large dataset of values f(x) f(xi)

Input layer

x

Weights θ

θ1
θ2θ3

Output layer

h(x; θ) “Surrogate function”

Hidden layers

Activation function

Neural networks are universal function approximators

9

Hornik, Stinchcombe, White ’89

Typical problem: approximate function from large dataset of values f(x) f(xi)

L(D; θ) =
1
N

N

∑
i=1

[f(xi) − h(xi; θ)]2

Optimisation problem: find weights such that a loss function is minimisedθ

Input layer

x

Weights θ

θ1
θ2θ3

Output layer

h(x; θ) “Surrogate function”

Hidden layers

Activation function

We don’t have a large dataset…

10

What we have:

• Small dataset of values (at least 1), obtained numerically in other ways

Liu, Ma 2022E.g. AMFlow Expensive evaluation, but very flexible→

• Differential equations:
df(x)
dx

= A(x) f(x)

Physics-informed deep learning

11

💡 Idea: include the DEs in the loss function

Raissi, Perdikaris, Karniadakis 2017

L(D; θ) = ∑
i

[h(xi; θ) − f(xi)]2 + ∑
j

[dh(x; θ)
dx x=xj

−A(xj) h(xj; θ)]
2

Small “boundary” dataset Infinite dimensional “DE” dataset

Derivatives of the NN computed with automatic differentiation Griewank, Walther 2008

Input: few boundary values + the analytic DEs

The canonical form of the DEs is not needed

12

We make mild assumptions to simplify the problem:

∂
∂vi

⃗F (⃗v; ϵ) = Avi
(⃗v; ϵ) ⋅ ⃗F (⃗v; ϵ) ∀ i = 1,…, nv : kinematic variables⃗v

The canonical form of the DEs is not needed

12

We make mild assumptions to simplify the problem:

∂
∂vi

⃗F (⃗v; ϵ) = Avi
(⃗v; ϵ) ⋅ ⃗F (⃗v; ϵ) ∀ i = 1,…, nv : kinematic variables⃗v

1. The matrices are rational functions Avi
(⃗v; ϵ) ⇒ Separate Re/Im parts, only

deal with real numbers

∂
∂vi

Re [⃗F (⃗v; ϵ)] = Avi
(⃗v; ϵ) ⋅ Re [⃗F (⃗v; ϵ)]

∂
∂vi

Im [⃗F (⃗v; ϵ)] = Avi
(⃗v; ϵ) ⋅ Im [⃗F (⃗v; ϵ)]

The canonical form of the DEs is not needed

12

We make mild assumptions to simplify the problem:

∂
∂vi

⃗F (⃗v; ϵ) = Avi
(⃗v; ϵ) ⋅ ⃗F (⃗v; ϵ) ∀ i = 1,…, nv : kinematic variables⃗v

1. The matrices are rational functions Avi
(⃗v; ϵ) ⇒ Separate Re/Im parts, only

deal with real numbers

2. The matrices are finite at , Avi
(⃗v; ϵ) ϵ = 0 Avi

(⃗v; ϵ) =
kmax

∑
k=0

ϵk A(k)
vi

(⃗v)

 Simplifies the expansion of the solution⇒ ϵ ⃗F (⃗v; ϵ) = ϵw*
wmax

∑
w=0

ϵw ⃗F (w)(⃗v)

Architecture

13

Dimensionless
kinematic
variables

Re or Im part of
 up to a

certain order in
⃗F (w)

ϵ

In the examples we considered: 3/4 hidden layers, 32—256 nodes per layer

PyTorch

Our loss function in full glory

Fixed small database of known values

Dynamic random sampling at each iteration

• Avoids over-fitting, no regularisation needed
• Validation can be done on the training dataset

14

Either Re of Im part of
the master integrals

Heavy crossed box

15

p1

p2

p3p4

m2

⃗v = {s = (p1 + p2)2 , t = (p1 − p3)2 , m2}
3 kinematic variables, 36 MIs

Canonical DEs / analytic solution unavailable

Involves elliptic functions
von Manteuffel, Tancredi 2017; Xu, Yang 2019;

Wang, Wang, Xu, Xu, Yang 2021; 
 Görges, Nega, Tancredi, Wagner 2023; Ahmed,

Chaubey, Kaur, Maggio 2024

Becchetti, Bonciani, Cieri, Coro, Ripani 2023
Full computation recently using generalised power series expansions (DiffExp)

Hidding 2020

Avi
(⃗v; ϵ) =

2

∑
k=0

ϵk A(k)
vi

(⃗v)MIs stripped of square roots

Federico Coro’s talk

Ekta Chaubey’s talk

Heavy crossed box: architecture

16

2 input variables
(fix)m2 = 1 36 x 5 = 180 outputs

3 hidden layers, 256 neurons each

⃗F (⃗v; ϵ) =
1
ϵ4

4

∑
w=0

ϵw ⃗F (w)(⃗v)

 ordersϵ

MIs (Re or Im)

Heavy crossed box: kinematic region

17

 channel: s s > − t > 0 ∧ m2 > 0
Never leave the chosen domain of
analyticity domain, so analytic
continuation is not required

We choose s < 10

Cut near boundaries:
 of largest value () 10 % 10

Singularities of the solution

Boundary values at 10 random points,
obtained with AMFlow Liu, Ma 2022

Heavy crossed box: training

18

Ensemble of 10 NNs

Iterations:

Time to train 1 NN: min
(on a good laptop, GPU)

Use training metric for
validation, as inputs for DE
loss function are dynamically
random sampled

7.9 × 104

75

Heavy crossed box: model performance

19

 ordersϵComparison against testing dataset of 100 points (AMFlow)

Mean absolute difference:

Mean magnitude of rel. diff.:

Evaluation time

1.6 × 10−3

7.3 × 10−3

∼ 1 − 10 μs

Good and bad

20

Flatness of the performance with respect to

• Analytic complexity (orders, MI) within the same family

• Across different families

ϵ

Instantaneous evaluation times 🥳

Good and bad

20

Flatness of the performance with respect to

• Analytic complexity (orders, MI) within the same family

• Across different families

ϵ

Instantaneous evaluation times 🥳

As of now, low control over accuracy 🙁

We can estimate it (ensemble uncertainty, differential
error), but as of now unclear how to increase it arbitrarily

Good and bad

20

Flatness of the performance with respect to

• Analytic complexity (orders, MI) within the same family

• Across different families

ϵ

Instantaneous evaluation times 🥳

As of now, low control over accuracy 🙁

We can estimate it (ensemble uncertainty, differential
error), but as of now unclear how to increase it arbitrarily

Only proof of concept!

Good and bad

20

Flatness of the performance with respect to

• Analytic complexity (orders, MI) within the same family

• Across different families

ϵ

Instantaneous evaluation times 🥳

As of now, low control over accuracy 🙁

We can estimate it (ensemble uncertainty, differential
error), but as of now unclear how to increase it arbitrarily

Only proof of concept!

Many ideas to improve!

Conclusion

21

New method to evaluate numerically Feynman integrals satisfying
generic DEs using physics-informed deep learning

Proof-of-concept implementation can reach 1% accuracy in non-trivial
2-loop examples

Much room for improvement!

Francesco Calisto, Ryan Moodie, Simone Zoia
(arXiv:2312.02067)

https://arxiv.org/abs/2312.02067

Conclusion

21

Thank you!

New method to evaluate numerically Feynman integrals satisfying
generic DEs using physics-informed deep learning

Proof-of-concept implementation can reach 1% accuracy in non-trivial
2-loop examples

Much room for improvement!

Francesco Calisto, Ryan Moodie, Simone Zoia
(arXiv:2312.02067)

https://arxiv.org/abs/2312.02067

Proof-of-concept implementation

23

• No need for regularisation to avoid overfitting
• Validation can be done on the training dataset

GELU (Gaussian Error Linear Unit) activation function (nonzero and continuous
2nd-order derivatives)

Train with stochastic gradient descent (Adam optimiser)

Mini-batch training: iterations organised into epochs composed of small batches,
taking a dynamic random sample of the inputs for each batch

PyTorch

Summary of hyperparameters

Training statistics

Uncertainty and testing errors

