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Feynman integrals are important, really

2

Essential ingredients of perturbative computations  particle phenomenology 
 
Also: gravitational waves, cosmology, statistical mechanics,  
mathematics… 

Many techniques, yet they remain a bottleneck 

One of the most powerful methods: integrals = solutions to differential equations

→

This is why we have 

“loops” in Loops and Legs! 

∂
∂s

⃗F (s; ϵ) = A (s; ϵ) ⋅ ⃗F (s; ϵ)
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NumericalAnalytical

❓

How do we solve the DEs?
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NumericalAnalytical

How do we solve the DEs?Construct a neural network 
to approximate the solution

Disclaimer: just the first steps!

“The key to happiness 
is low expectations”



Method of differential equations
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∂
∂s12

⃗F (s; ϵ) = As12
(s; ϵ) ⋅ ⃗F (s; ϵ)



Integral families and master integrals
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Scalar Feynman integrals with the same propagator structure = integral family 

I ⃗a(s, t; ϵ) = ∫
dDk
iπD/2

1
Da1

1 …Da4
4

D1 = k2

D2 = (k + p1)2

D3 = (k + p1 + p2)2

D4 = (k − p4)2{I ⃗a(s, t; ϵ) |∀ ⃗a ∈ ℤ4}
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Scalar Feynman integrals with the same propagator structure = integral family 

I ⃗a(s, t; ϵ) = ∫
dDk
iπD/2

1
Da1

1 …Da4
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D1 = k2

D2 = (k + p1)2

D3 = (k + p1 + p2)2

D4 = (k − p4)2{I ⃗a(s, t; ϵ) |∀ ⃗a ∈ ℤ4}

Identities among the ’sI ⃗a

p =
3 − D

p2
×

Chetyrkin, Tkachov ’81; Laporta 2000

e.g. Integration-By-Parts relations

Finite-dimensional basis: 
master integrals ⃗F (s, t; ϵ)

 ⇒



Integrating by differentiating
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Barucchi, Ponzano ’73; Kotikov ’91; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000

∂
∂s12

⃗F (s; ϵ) = ∑⃗
a

c ⃗a I ⃗a

= As12
(s; ϵ) ⋅ ⃗F (s; ϵ)

IBP reduction

 System of 1st order linear PDEs for the MIs ⇒ ⃗F

How do we solve it? ⃗F (s; ϵ) = ∑
w≥wmin

ϵw ⃗F (w)(s)



Choose MIs such that DEs take canonical form  

Solution in terms of special functions

Analytic solution not always feasible
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Henn 2013

Moriello 2019

DiffExp Hidding 2020, SeaSyde Armadillo et al. 2022, 
AMFlow Ma, Liu 2022

Growing interest for semi-numerical solution 
based on series expansions

😄 Very flexible 
🙁 Long evaluation times

No general algorithm!

Logs

Classical polylogs

MPLs

Elliptic MPLs
???

In the most complicated cases, we lack 
the mathematical technology!
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Goals: flexibility + fast evaluation time

Slide idea from Melissa van Beekveld

Can machine learning help to achieve this? Let’s ask ChatGPT

Just what we ended 
up using!

We should have 
asked ChatGPT 
rightaway…



Neural networks are universal function approximators
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Hornik, Stinchcombe, White ’89

Typical problem: approximate function  from large dataset of values  f(x) f(xi)
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Neural networks are universal function approximators
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Hornik, Stinchcombe, White ’89

Typical problem: approximate function  from large dataset of values  f(x) f(xi)

L(D; θ) =
1
N

N

∑
i=1

[f(xi) − h(xi; θ)]2

Optimisation problem: find weights  such that a loss function is minimisedθ

Input layer

x

Weights θ

θ1
θ2θ3

Output layer

h(x; θ) “Surrogate function”

Hidden layers

Activation function



We don’t have a large dataset…
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What we have:

• Small dataset of values (at least 1), obtained numerically in other ways 

Liu, Ma 2022E.g. AMFlow  Expensive evaluation, but very flexible→

• Differential equations:
df(x)
dx

= A(x) f(x)



Physics-informed deep learning
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💡 Idea: include the DEs in the loss function

Raissi, Perdikaris, Karniadakis 2017

L(D; θ) = ∑
i

[h(xi; θ) − f(xi)]2 + ∑
j

[dh(x; θ)
dx x=xj

−A(xj) h(xj; θ)]
2

Small “boundary” dataset Infinite dimensional “DE” dataset

Derivatives of the NN computed with automatic differentiation Griewank, Walther 2008

Input: few boundary values + the analytic DEs



The canonical form of the DEs is not needed
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We make mild assumptions to simplify the problem:

∂
∂vi

⃗F ( ⃗v; ϵ) = Avi
( ⃗v; ϵ) ⋅ ⃗F ( ⃗v; ϵ) ∀ i = 1,…, nv  : kinematic variables⃗v
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We make mild assumptions to simplify the problem:

∂
∂vi

⃗F ( ⃗v; ϵ) = Avi
( ⃗v; ϵ) ⋅ ⃗F ( ⃗v; ϵ) ∀ i = 1,…, nv  : kinematic variables⃗v

1. The matrices  are rational functions Avi
( ⃗v; ϵ) ⇒ Separate Re/Im parts, only 

deal with real numbers

∂
∂vi

Re [ ⃗F ( ⃗v; ϵ)] = Avi
( ⃗v; ϵ) ⋅ Re [ ⃗F ( ⃗v; ϵ)]

∂
∂vi

Im [ ⃗F ( ⃗v; ϵ)] = Avi
( ⃗v; ϵ) ⋅ Im [ ⃗F ( ⃗v; ϵ)]
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We make mild assumptions to simplify the problem:

∂
∂vi

⃗F ( ⃗v; ϵ) = Avi
( ⃗v; ϵ) ⋅ ⃗F ( ⃗v; ϵ) ∀ i = 1,…, nv  : kinematic variables⃗v

1. The matrices  are rational functions Avi
( ⃗v; ϵ) ⇒ Separate Re/Im parts, only 

deal with real numbers

2. The matrices  are finite at , Avi
( ⃗v; ϵ) ϵ = 0 Avi

( ⃗v; ϵ) =
kmax

∑
k=0

ϵk A(k)
vi

( ⃗v)

 Simplifies the  expansion of the solution⇒ ϵ ⃗F ( ⃗v; ϵ) = ϵw*
wmax

∑
w=0

ϵw ⃗F (w)( ⃗v)



Architecture
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Dimensionless 
kinematic 
variables

Re or Im part of 
 up to a 

certain order in 
⃗F (w)

ϵ

In the examples we considered: 3/4 hidden layers, 32—256 nodes per layer

PyTorch



Our loss function in full glory

Fixed small database of known values

Dynamic random sampling at each iteration

• Avoids over-fitting, no regularisation needed 
• Validation can be done on the training dataset

14

Either Re of Im part of 
the master integrals



Heavy crossed box
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p1

p2

p3p4

m2

⃗v = {s = (p1 + p2)2 , t = (p1 − p3)2 , m2}
3 kinematic variables, 36 MIs

Canonical DEs / analytic solution unavailable 

Involves elliptic functions
von Manteuffel, Tancredi 2017; Xu, Yang 2019;  

Wang, Wang, Xu, Xu, Yang 2021; 
 Görges, Nega, Tancredi, Wagner 2023; Ahmed, 

Chaubey, Kaur, Maggio 2024

Becchetti, Bonciani, Cieri, Coro, Ripani 2023
Full computation recently using generalised power series expansions (DiffExp)

Hidding 2020

Avi
( ⃗v; ϵ) =

2

∑
k=0

ϵk A(k)
vi

( ⃗v)MIs stripped of square roots 

Federico Coro’s talk

Ekta Chaubey’s talk



Heavy crossed box: architecture
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2 input variables 
(fix )m2 = 1 36 x 5 = 180 outputs

3 hidden layers, 256 neurons each

⃗F ( ⃗v; ϵ) =
1
ϵ4

4

∑
w=0

ϵw ⃗F (w)( ⃗v)

 ordersϵ

MIs (Re or Im)



Heavy crossed box: kinematic region
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 channel: s s > − t > 0 ∧ m2 > 0
Never leave the chosen domain of 
analyticity domain, so analytic 
continuation is not required

We choose s < 10

Cut near boundaries:  
 of largest value ( ) 10 % 10

Singularities of the solution

Boundary values at 10 random points, 
obtained with AMFlow Liu, Ma 2022



Heavy crossed box: training
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Ensemble of 10 NNs 

Iterations:  

Time to train 1 NN:  min 
(on a good laptop, GPU) 

Use training metric for 
validation, as inputs for DE 
loss function are dynamically 
random sampled

7.9 × 104

75



Heavy crossed box: model performance
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 ordersϵComparison against testing dataset of 100 points (AMFlow) 

Mean absolute difference:  

Mean magnitude of rel. diff.:  

Evaluation time  

1.6 × 10−3

7.3 × 10−3

∼ 1 − 10 μs



Good and bad
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Flatness of the performance with respect to

• Analytic complexity (  orders, MI) within the same family 

• Across different families

ϵ

Instantaneous evaluation times 🥳
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Flatness of the performance with respect to

• Analytic complexity (  orders, MI) within the same family 

• Across different families

ϵ

Instantaneous evaluation times 🥳

As of now, low control over accuracy 🙁

We can estimate it (ensemble uncertainty, differential 
error), but as of now unclear how to increase it arbitrarily 

Only proof of concept!

Many ideas to improve!



Conclusion
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New method to evaluate numerically Feynman integrals satisfying 
generic DEs using physics-informed deep learning 

Proof-of-concept implementation can reach 1% accuracy in non-trivial 
2-loop examples 

Much room for improvement!

Francesco Calisto, Ryan Moodie, Simone Zoia 
(arXiv:2312.02067)

https://arxiv.org/abs/2312.02067
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Thank you!

New method to evaluate numerically Feynman integrals satisfying 
generic DEs using physics-informed deep learning 

Proof-of-concept implementation can reach 1% accuracy in non-trivial 
2-loop examples 

Much room for improvement!

Francesco Calisto, Ryan Moodie, Simone Zoia 
(arXiv:2312.02067)

https://arxiv.org/abs/2312.02067




Proof-of-concept implementation
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• No need for regularisation to avoid overfitting 
• Validation can be done on the training dataset

GELU (Gaussian Error Linear Unit) activation function (nonzero and continuous 
2nd-order derivatives) 

Train with stochastic gradient descent (Adam optimiser) 

Mini-batch training: iterations organised into epochs composed of small batches, 
taking a dynamic random sample of the inputs for each batch

PyTorch



Summary of hyperparameters



Training statistics

Uncertainty and testing errors


