Learning Feynman integrals from
differential equations with neural networks

Simone Zoia

with Francesco Calisto, Ryan Moodie (arXiv:2312.02067)

| 0
L oops and Legs, 16" April 2024 < T
= * *
o]

MARIE CURIE

EW



https://arxiv.org/abs/2312.02067

Feynman integrals are important, really

—ssential ingredients of perturbative computations — particle phenomenology

Also: gravitational waves, cosmology, statistical mechanics,

mathematics...
Many techniques, yet they remain a bottleneck

One of the most powerful methods: integrals = solutions to differential equations

if(s; e)=A(s;e) - F (sie)
s



How do we solve the DEs?




HOW dO we SOIVG tk Construct a neural network

to approximate the solution




HOW dO we SOIVG tk Construct a neural network

to approximate the solution

Disclaimer: just the first steps!

“The key to happiness
is low expectations”



Method of differential equations

a —> —>
F(s;e) =A; (s;¢)- F (s;5¢)
aslz 12




Integral families and master integrals

Scalar

P2

P1

-eynman integrals with the same propagator structure = integral family
d’k 1 = k?
§ p3 Ic_i(s’ t: 6) — I — - Dl k
17~ DDy D, = (k +p1)2

Dy = (k+p; + p,)°
P4 {Iis. ;) |Vd € Z*} D = (k- py)°

Y



Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family

d’k 1 = k?
p2 ) Py I (s,1;€) = I . D, =k
izP/2 Dfl...Df“ D, = (k _|_p1)2
D3 = (k +p1 +p2)2
2 i P4 {I(s,1;¢)|Vd € Z*} D, = (k — )

[dentities among the 1>’

00 W Ve
P T T\

e.g. Integration-By-Parts relations
Chetyrkin, Tkachov ’81; Laporta 2000



Integral families and master integrals

Scalar Feynman integrals with the same propagator structure = integral family

D
P2 3 pP3 I—>(S t.€)=J, d”k 1 D1=k2
i7rD/2 Dfl...Df“ D, = (k _|_p1)2
D; = (k+p, + p,)°
> . - 4
D1 L P4 {Ic_i(s’ t; €) ‘ Vae”/ } D4 = (k _p4)2
dentities among the 17's Finite-dimensional basis:
3-D master integrals F (s, ;
YN o () N aster integrals F (s, ; ¢)
P \_/ p2 _/ , .
e.g. Integration-By-Parts relations >O< >Q<
Chetyrkin, Tkachov '81; Laporta 2000 i i SR



Integrating by differentiating

Barucchi, Ponzano ’73; Kotikov '91; Bern, Dixon, Kosower ‘94;: Gehrmann, Remiddi 2000

0 0 0

il

: (s, €)
> 2(2¢—1) 2(1-2€)  stitet
st(s+t) s2?(s+t) s(s+t)

0 F (s; €) z |
S,€) = Cz 1z D ' 0 - .
o 4 \B reduction a F(S,t;e)( 0 _c 0 )

= AS12 (s;€) - F (s;€)

P2 P3

—

= System of 1st order linear PDEs for the MlIs F T 1

P1

P4

Y

How do we solve it?  F(s;e) = Z e F W(s)

szmin



Analytic solution not always feasible

a

Choose Mis such that DEs take canonical form Henn 2073 N0 general algorithm!

Solution in terms of special functions nno

&. N the most complicated cases, we lack E”ip}ic MPLs

the mathematical technology!

Growing interest for semi-numerical solution
based on series expansions Moriello 2019

DIffEXp Hidding 2020, SeaSyde Armadillo et al. 2022,
AMFlow Ma, Liu 2022

& Very flexible

< Long evaluation times

" Classical polylogs



Goals: flexibility + fast evaluation time

Can machine learning help to achieve this”? Let’s ask ChatGPT

S) You
Hello ChatGPT! | have a system of first-order linear partial differential equations. | would like to
solve it numerically using machine learning. What do you suggest? Please keep it short, it has to

fit in a slide of my talk at Loops and Legs 2024 ) \J USt What We eﬂded
up using!
ChatGPT

For solving first-order linear partial differential equations numerically using machine learning,

consider employin¢ neural network-based methods like Physics-Informed Neural Networks

We should have

(PINNSs) or Finite Element Neural Networks (FENN). These methods can efficiently approximate
solutions while enforcing physical constraints. They've shown promise in various scientific dS ked ChatG PT

computing tasks, including solving PDEs. righ’[away. .
M O O Y

Slide idea from Melissa van Beekveld



Neural networks are universal function approximators

Hornik, Stinchcombe, White ‘89

Typical problem: approximate function f(x) from large dataset of values f(x;)



Neural networks are universal function approximators

Hornik, Stinchcombe, White ‘89

Typical problem: approximate function f(x) from large dataset of values f(x;)




Neural networks are universal function approximators

Hornik, Stinchcombe, White ‘89

Typical problem: approximate function f(x) from large dataset of values f(x;)

X

/

Input layer




Neural networks are universal function approximators

Hornik, Stinchcombe, White ‘89

Typical problem: approximate function f(x) from large dataset of values f(x;)

Input layer /

Weights &



Neural networks are universal function approximators

Hornik, Stinchcombe, White ‘89

Typical problem: approximate function f(x) from large dataset of values f(x;)

Activation function

Input laver
putlayer 7 ~

Weights € Hidden layers



Neural networks are universal function approximators

Hornik, Stinchcombe, White ‘89

Typical problem: approximate function f(x) from large dataset of values f(x;)

Activation function

h(x; 0) “Surrogate function”

Input layer

/ "\ Va Output layer

Weights € Hidden layers



Neural networks are universal function approximators

Hornik, Stinchcombe, White ‘89

Typical problem: approximate function f(x) from large dataset of values f(x;)

Activation function

h(x; 0) “Surrogate function”

Input layer

/ "\ Y Output layer

Weights € Hidden layers

Optimisation problem: find weights @ such that a loss function is minimised

1 N
L(D: 0) =~ ' [f0s) = hoz 0)]
=1

9



We don’t have a large dataset...

What we have:

® Small dataset of values (at least 1), obtained numerically in other ways

E.g. AMFlow Liu, Ma 2022 — EXpensive evaluation, but very flexible

e Differential equations: d];(;c) = A(x) f(x)

10



Physics-informed deep learning

Raissi, Perdikaris, Karniadakis 2017

- ldea:; include the DEs In the loss function

dh(x 0)

2
L(D;6) = Z h(x; 0) — f(x)] g Z —A(x) h(x; 9)]

Small “boundary” dataset Infinite dimensional “DE” dataset

Derivatives of the NN computed with automatic differentiation Griewank, Walther 2008

Input: few boundary values + the analytic DEs

11



The canonical form of the DEs i1s nhot needed

We make mild assumptions to simplify the problem:

a_F({}; e)=A,(V;e)- F(vie) Vi=1,..n V : kinematic variables
V; l

12



The canonical form of the DEs i1s nhot needed

We make mild assumptions to simplify the problem:

a_F({}; e)=A,(V;e)- F(vie) Vi=1,..n V : kinematic variables
V; l

Separate Re/Im parts, only

1. The matrices A., (v; €) are rational function |
e matrices Vi(v, ¢) are rational functions = el with real nUMbers

a [ — i — |
——Re | F(¥:¢)| = A, e)-Re[F(T/’; )
V; 2 . l .

0 — ] — ]
a—Im [F (v;e)| =A,(v;e) - Im [F (V; €)
V; . l .

12



The canonical form of the DEs i1s nhot needed

We make mild assumptions to simplify the problem:

a_F({}; e)=A,(V;e)- F(vie) Vi=1,..n V : kinematic variables
V; l

Separate Re/Im parts, only

1. The matrices A., (v; €) are rational function |
e matrices Vi(v, ¢) are rational functions = el with real nUMbers

k

max

2. The matrices Av,(\_/); €)arefinteate =0, A, (Vie)= Z e Aél.k)(?)
k=0

Wmax

= Simplifies the € expansion of the solution ~ F (¥ €) = ¢ 2 e F (%)

w=0

12



Architecture

¢\\0//‘\\{{A\\\

PyTorch

(/
: Vs algts 2 0954

VAN
Dimensionless k’/‘kﬁ%‘o{.}‘%‘i‘o{‘}&%‘é ca Re or Im part of
cinematic ; w‘ S suie 940 F o to a
variables /}é\'/; Ug&’\\'/;@@’\\ "{‘%\' - certain order in €

RGE®
Sy

;
vy

INn the examples we considered: 3/4 hidden layers, 32 —256 nodes per layer

13



Our loss function in full glory

NF Wmax | «~—  — Either Re of Im part of
b(Dp,0) = > > ) h;-w) (#9;6) — g\ (*(7’))_ the master integrals

() Dy, j=1 w=0

~—

Fixed small database of known values

Lpr(DpE, 0) =
~ nFny—lwmax min(w,kmax) npg 1 2
w —( 7 k N1 w— e
Do 2 D (o@D~ Y0 YA (ED) AP (a0);0)
7@ eDpr J=1 =1 w=0 L k=0 r=1 _

\ Dynamic random sampling at each iteration

® Avoids over-fitting, no regularisation needed
® \/alidation can be done on the training dataset

14



Heavy crossed box

3 kinematic variables, 36 Mls

P>
- ) > 2
v=As=(p+p)*, t=(p,—py*, m*}
A < >
P4 P Canonical DEs / analytic solution unavailable
2 Involves elliptic functions

von Manteuffel, Tancredi 2017; Xu, Yang 2019;

Wang, Wang, Xu, Xu, Yang 2021, Ekta Chaubey’s talk
Gorges, Nega, Tancredi, Wagner 2023; Ahmed,

Chaubey, Kaur, Maggio 2024

Full computation recently using generalised power series expansions (DiffExp)
Becchetti, Bonciani, Cieri, Coro, Ripani 2023 Hidding 2020

2
<> Mls stripped of square roots — A, (V;€) = Z X AJO()

k=0
\> Federico Coro’s talk

15



Heavy crossed box: architecture

®
-+ @ ® - Mls (Re or Im)
2 input variables y " \
fix m? = 1) @ ® 36 X 5\: 180 outputs
@ ® € orders
piame) - o o
o O © F(¥e) = gz_‘ge F()

3 hidden layers, 256 neurons each

10



Heavy crossed box: kinematic region

Never leave the chosen domain of

schannel: s > —t>0 A m*>0 —» analyticity domain, so analytic

—0.5 -

—1.0 A

—1.5 -

—2.0 A

—2.5 1

17

continuation is not required
We choose s < 4/ 10

Singularities of the solution

/

Cut near boundaries:

10 % of largest value (/ 10)

Boundary values at 10 random points,
obtained with AMFlow Liu, Ma 2022




Loss

Heavy crossed box: training

Best
Middle

—  \\orst

25

50

75

100
Epoch

125

150

18

175

Ensemble of 10 NINs

terations: 7.9 X 10*

Time to train 1 NN: 75 min
(on a good laptop, GPU)

Use trainl
validatior
-

loss fur

random

100N
SalT]

Nng metric for
, as Inputs for DE

are dynamically
pled



Heavy crossed box: model performance

Comparison against testing dataset of 100 points (AMFlow) € orfers
Mean absolute difference: 1.6 X 107> . i v
1
Mean magnitude of rel. diff.: 7.3 X 107> 215 %
Evaluation time ~ 1 — 10 us glo' ] jg]:j
5 - AH (T e

o#ﬁgz;fﬁ . %% i

10-7 107° 10— 10% 1073 1072 107! 10° 10!
Magnitude of relative difference

19



Good and bad

Flatness of the performance with respect to

e Analytic complexity (€ orders, Ml) within the same family

® Across different families

Instantaneous evaluation times &3

20




Good and bad

Flatness of the performance with respect to

e Analytic complexity (€ orders, Ml) within the same family

® Across different families
Instantaneous evaluation times &3

As of now, low control over accuracy &

C We can estimate it (ensemble uncertainty, differential
error), but as of now unclear how to increase it arbitrarily

20




Good and bad

Flatness of the performance with respect to

e Analytic complexity (€ orders, Ml) within the same family

® Across different families
Instantaneous evaluation times &&

As of now, low control over accuracy &

C We can estimate it (ensemble uncertainty, differential
error), but as of now unclear how to increase it arbitrarily

20




Good and bad

Flatness of the performance with respect to

e Analytic complexity (€ orders, Ml) within the same family

® Across different families

Instantaneous evaluation times &&

As of now, low control over accuracy &

C We can estima

error), but as of

e It (ensemble uncertainty, differential
now unclear how to increase it arbitrarily

20

|

AV

~




Conclusion

New method to evaluate numerically Feynman integrals satisfying
generic DEs using physics-informed deep learning

Proof-of-concept implementation can reach 1% accuracy in non-trivial
2-loop examples

Much room for improvement!

-rancesco Calisto, Ryan Moodie, Simone Zoia
(arXiv:2312.02067)

21


https://arxiv.org/abs/2312.02067

Conclusion

New method to evaluate numerically Feynman integrals satisfying
generic DEs using physics-informed deep learning

Proof-of-concept implementation can reach 1% accuracy in non-trivial
2-loop examples

Much room for improvement!

-rancesco Calisto, Ryan Moodie, Simone Zoia

(arXiv:2312.02067)
%@m/

21


https://arxiv.org/abs/2312.02067




Proof-of-concept implementation

2nd-order derivatives)

Py forch

GELU (Gaussian Error Linear Unit) activation function (honzero and continuous

Train with stochastic gradient descent (Adam optimiser)

Mini-batch training: iterations organ

ised Into epochs composed of small batches,

taking a dynamic random sample o

" the Inputs for each batch

\‘ e No need for regularisation to avoid overfitting
® \/alidation can be done on the training dataset

23



Integral family
Inputs
Hidden layers
Outputs
Learning rate
Batch size
Boundary points

Cn,

Scale bound
Physical cut (%)
Spurious cut (%)

box one-mass double box

heavy crossed box

Summary of hyperparameters

top double box

2
4 x 128
99
10~
256
20
m? =
S12 < O
10

1




Integral family Final loss Iterations Time (minutes)

box 2.7x 107" 2.5 x 10° 16

one-mass double box 3.4 x 107% 1.1 x 10° 03

heavy crossed box 1.4 x 1072 7.9 x 104 75

top double box 7.1%x107* 5.2 x 10 32

Training statistics
Integral family MEU MDE MAD MMRD MLR Size
box 2.8x107° 36x107% 29x10™° 22x10° 39x10~" 10°
oneemass DB 8.1x107% 1.1x1072 20x107% 1.1x107%2 —-28x10"% 10°
heavy CB 2.8x107% 28x107% 16x10™° 73x107° —45x107* 10?
top DB 1.9x107* 1.7x107% 9.0x10* 39x10° 1.8x10* 107
Uncertainty and testing errors




