Planar Two-Loop $t \bar{t} H$ integrals with a Light Quark Loop

Ben Page

Ghent University, Physics and Astronomy Department

$$
\text { Loops and Legs, } 17^{\text {th }}-21^{\text {st }} \text { May } 2021
$$

With F. Febres Cordero, G. Figueiredo, M. Kraus, L. Reina

based on [arXiv:2312.08131]

erc

Motivation

- $t \bar{t} H$ production \Rightarrow precisely measure top Yukawa.
- Projected precision of 2% at end of Hi-Lumi phase.
- NNLO real radiation contribution available. [Catani et al '21, Catani et al '22] [Chiara's talk]
- Two-loop virtuals missing.
[This talk, Vitaly's talk]

Status of NNLO Five-Point Massive Double Virtual

$p p \rightarrow t \bar{t} j$

- One-loop amplitudes @ $\mathcal{O}\left(\epsilon^{2}\right)$. [Badger, Bechetti, Chaubey, Marzucca, Sarandrea]
- Family of planar two-loop integrals [Badger, Bechetti, Chaubey, Marzucca, Sarandrea] [Matteo's talk] $p p \rightarrow t \bar{t} H$
- One-loop $g g \rightarrow t t H @ \mathcal{O}\left(\epsilon^{2}\right)$ [Buccioni, Kreer, Liu, Tancredi '23]
- IR divergences of 2-loop amplitudes [Chen, Ma, Wang, Yang, Ye '22].
- Two-loop amplitudes in boosted limit, soft Higgs limit: [Wang, Xia, Yang, Ye, '24; Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '22]
- Two-loop $q \bar{q} \rightarrow t \bar{t} H$ amplitudes, N_{f} piece [Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson '24] [Vitaly's talk]
- Two-loop planar master integrals for light-quark loop. [Febres Cordero, Figueiredo, Kraus, BP, Reina '23] [This talk]

Light Fermion Loops in Leading Color $p p \rightarrow t \bar{t} H$

- All integrals contained in $g g \rightarrow t \bar{t} H$. Three top topologies.

- Two families of two-loop Feynman integrals.

Scattering Kinematics

$$
\text { Channel: } q\left(p_{4}\right) q\left(p_{5}\right) \rightarrow t\left(p_{1}\right) H\left(p_{2}\right) \bar{t}\left(p_{3}\right)
$$

- Five-point, two massless legs. On-shell tops, generic Higgs.

$$
p_{1}^{2}=p_{3}^{2}=m_{t}^{2}, \quad p_{2}^{2}=q^{2}, \quad p_{4}^{2}=p_{5}^{2}=0
$$

- 7 independent mandelstam invariants.

$$
\vec{s}=\left\{q^{2}, m_{t}^{2}, v_{12}, v_{23}, v_{34}, v_{45}, v_{15}\right\}, \quad v_{i j}=2 p_{i} \cdot p_{j}
$$

- Physical region:

$$
\begin{gathered}
m_{t}^{2}>0, \quad q^{2}>0, \quad v_{12} \geq 2 m_{t} q, \quad v_{23} \geq 2 m_{t} q \\
v_{34} \leq 0, \quad v_{15} \leq 0, \quad v_{45} \geq\left(2 m_{t}+q\right)^{2} \\
G\left(p_{i}, p_{j}, p_{k}\right) \geq 0, \quad G\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \leq 0, \quad G\left(q_{1}, \ldots, q_{n-1}\right)=\operatorname{det}\left(q_{i} \cdot q_{j}\right) .
\end{gathered}
$$

Calculational Strategy

1 Work in differential equations framework.

$$
\begin{aligned}
& \mathrm{d} J=\overline{\mathbf{M}} J \\
& \text { [Kotikov '91; Remiddi '97; Gehrmann, Remiddi '01] }
\end{aligned}
$$

2 Find basis with ϵ-factorized form.

$$
J=U I \quad \rightarrow \quad \mathrm{~d} I=\epsilon \mathbf{M} I
$$

[Henn '13]
3 Organize differential matrix into basis of forms.

$$
\mathbf{M}_{k l}=\epsilon M_{k l m} \boldsymbol{\omega}_{\boldsymbol{m}}
$$

4 Numerical solutions via series expansion. (Preliminary).

> [Moriello '19, Hidding '20, Liu, Ma '22]

Pure Basis Construction

Many automated tools, but difficult to apply with many scales
[Prausa '17, Gituliar, Magerya '17, Dlapa, Henn, Yan '20, Lee '21], ...

Our approach:

1. From experience, choose initial basis satisfying ϵ-linear DE:

$$
\overline{\mathbf{M}}(\epsilon, \vec{s})=\overline{\mathbf{M}}^{(0)}(\vec{s})+\epsilon \overline{\mathbf{M}}^{(1)}(\vec{s}) .
$$

2. Change to ϵ-factorizing basis $J=U I$, where U satisfies

$$
\mathrm{d} U_{i j}=\overline{\mathbf{M}}_{\mathrm{ix}}^{(\mathbf{0})} U_{x j} .
$$

- Solve DE blockwise with Magnus expansion [Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Schubert, Tancredi '14]

Magnus Machinations: kite7

- Solving $\mathrm{d} U=\overline{\mathbf{M}}^{0} U$ blockwise non-trivial for kite_{7} topology.

$$
\mathrm{d} U=\frac{1}{4}\left(\begin{array}{c}
0 \\
\mathrm{~d} \log (\underbrace{A}_{\text {algebraic }})
\end{array}\right.
$$

- Solution to DE (and integral basis) involves nested root,

$$
\begin{gathered}
\sqrt{N_{+}}=\sqrt{q^{2}\left(N_{b}+\sqrt{N_{b}^{2}-N_{c}}\right)}, \\
N_{b}=q^{2}\left[\left(v_{14}+v_{15}\right)^{2}+\left(v_{34}+v_{35}\right)^{2}\right]-2 m_{t}^{2}\left(v_{24}+v_{25}\right)^{2}, \\
N_{c}=q^{2}\left(q^{2}-4 m^{2}\right)\left(v_{12}-v_{23}\right)^{2}\left(v_{24}+v_{25}+2 v_{45}\right)^{2} .
\end{gathered}
$$

- Novel analytic structure! [See also Matteo's Talk]

Reconstructing ϵ-factorized DEs

- We express DE in basis given by subset of DE entries:

$$
\mathrm{d} I_{k}=\epsilon \mathbf{M}_{\mathbf{k} \mathbf{l}} / /, \quad \mathbf{M}_{\mathbf{k} \mathbf{l}}=\underbrace{M_{k l m}}_{\mathbb{Q}} \underbrace{\omega_{\boldsymbol{m}}[\vec{s}]}_{\text {algebraic }}
$$

[Abreu, Ita, Moriello, BP, Tschernow, Zeng '20]

- $M_{k l m}$ are rational numbers: compute via finite-field samples. [von Manteuffel, Schabinger '14; Peraro '17] [Abreu, BP, Zeng, '17]
- $\boldsymbol{\omega}_{\boldsymbol{m}}$ are algebraic, controlled by "Galois transformations".

$$
\begin{gathered}
\sqrt{x} \rightarrow-\sqrt{x} \\
\alpha: \sqrt{N_{+}} \rightarrow \sqrt{q^{2}\left(q^{2}-4 m_{t}^{2}\right)} \frac{q^{2}\left(v_{12}-v_{23}\right)\left(2 q^{2}+v_{12}+v_{23}-2 v_{45}\right)}{\sqrt{N_{+}}}
\end{gathered}
$$

Problem reduced to computation of basis of $\boldsymbol{\omega}_{m}$.

Analytic Reconstruction of the $\boldsymbol{\omega}_{m}$

- Differential forms have well understood structure:

$$
\omega_{\boldsymbol{m}}=\frac{1}{\prod_{i}(\underbrace{W_{i}^{e}}_{\text {polynomial }})^{q_{i m}}} \underbrace{\Omega_{\boldsymbol{m}}}_{\text {algebraic form }}
$$

- Observation: All W_{i}^{e} arise in polynomial $\boldsymbol{\omega}_{\boldsymbol{m}}$. [Abreu, Ita, Moriello, BP, Tschernow, Zeng '20]
- For polynomial $\boldsymbol{\Omega}_{\boldsymbol{m}}$: use denominators for $\mathrm{d} \log$ form Ansatz.

$$
\omega_{\boldsymbol{m}}=\sum_{i} c_{m i} \mathrm{~d} \log \left(W_{i}\right)
$$

- NB: Completely avoid complicated $\boldsymbol{\Omega}_{\boldsymbol{m}}$ reconstruction!

Algebraic Letters Ansätze [Febres Cordero, Figueiredo, Kraus, BP, Reina '23]

For $\sqrt{N_{+}}$independent assume d log-form, exploit root structure.
$\mathrm{d} \log \left(\frac{w+\sqrt{R}}{w-\sqrt{R}}\right)=\frac{1}{\sqrt{R}} \frac{2 R(\mathrm{~d} w)-w(\mathrm{~d} R)}{w^{2}-R}, \quad w^{2}-R=\prod_{i} W_{i}^{\mathrm{e}}$.

- Write rational Ansatz for w

$$
w=\frac{w_{N}}{w_{D}}, \quad w_{X}=\sum_{\vec{\gamma}} w_{x, \vec{\gamma}} \prod_{i=1}^{7} s_{i}^{\gamma_{i}}
$$

- Constrain Ansatz by requiring denominator structure

$$
w_{N}^{2}-R w_{D}^{2} \quad \bmod \quad \prod w_{i}^{\mathrm{e}}=0
$$

see also [Heller, von Manteuffel, Schabinger '19]

- Solving for $w_{x, \vec{\gamma}}$ with Gröbner basis techniques.

Alphabet Summary

- 152 letters*. 9 are "irrelevant": arise in integrals @ $\mathcal{O}(\epsilon)$.
*Much larger than single family for $p p \rightarrow W_{j j}$
- 122 relevant letters do not depend on $\sqrt{N_{+}}$.

Mass dimension	1	2	3	4	5	6	Σ
\# Polynomial Letters	19	10	8	5	0	1	43
\# Algebraic, single odd	14	12	15	0	0	1	42
\# Algebraic, double odd	5	21	10	1	0	1	37

- Remaining 21 relevant letters depend on $\sqrt{N_{+}}$.

Letters Involving $\sqrt{N_{ \pm}}$

- Many d log-forms, e.g.
$\mathrm{d} \log \left(\frac{q^{2}\left[v_{45}+s_{13}-q^{2}\right]-\sqrt{N_{+}}}{q^{2}\left[v_{45}+s_{13}-q^{2}\right]+\sqrt{N_{+}}}\right), \quad \mathrm{d} \log \left(\frac{q^{2}\left(v_{12}-v_{23}\right)\left(v_{45}+s_{13}-q^{2}\right)+\sqrt{r_{1}} \sqrt{N_{+}}}{q^{2}\left(v_{12}-v_{23}\right)\left(v_{45}+s_{13}-q^{2}\right)-\sqrt{r_{1}} \sqrt{N_{+}}}\right)$
- We were unable to find a d log form for 4 cases, generated by

$$
\boldsymbol{\omega}^{E}=\frac{\boldsymbol{\Omega}^{E}}{m_{t}^{2}\left(q^{2}-v_{23}\right) \sqrt{G\left(p_{2}, p_{3}\right)} \sqrt{N_{+}} \sqrt{N_{b}^{2}-N_{c}} W_{32}} .
$$

- Unclear if possible. Would like to have decision procedure.

Numerical Solutions

- Use AMFlow to determine 100-digit physical region boundary. [Liu, Ma '22]
- Can solve our DE using series expansion techniques.
[Moriello '19]
- Public implementations dislike $\sqrt{N_{+}}$. Use auxiliary kite basis.

- Proof of concept DiffExp implementation in ancillaries.
[Hidding '20]

Summary and Outlook

- We compute a family of integrals for $p p \rightarrow t \bar{t} H$ @ NNLO.
- We provide a differential equation in ϵ-factorized form.
- We find a novel analytic structure: nested square root $\sqrt{N_{+}}$.
- Looking forward:
- Form of DE lends itself to one-fold integral solutions.
à la [Chicherin, Sotnikov '20]
- Other pentabox families for $p p \rightarrow t \bar{t} H$ are elliptic.

Algebraic Structure of ϵ-Factorized DE

- DE is algebraic. Involves roots of Gram/Cayley determinants.

$$
\begin{aligned}
\sqrt{G\left(p_{1}, p_{2}\right)}, \sqrt{G\left(p_{1}, p_{23}\right)}, & (1,3) \leftrightarrow(4,5), \quad \sqrt{G\left(p_{2}, p_{34}\right)}, \sqrt{G\left(p_{1}, p_{2}, p_{3}, p_{4}\right)}, \\
& \sqrt{\mathcal{C}(\ngtr)}, \sqrt{\mathcal{C}(\square)}
\end{aligned}
$$

- Other roots are two-loop like:

$$
\sqrt{\mathrm{LS}(\square)}, \quad(1,3) \leftrightarrow(4,5), \quad \sqrt{\mathrm{LS}(\ngtr)}, \sqrt{N_{ \pm}}, \sqrt{N_{b}^{2}-N_{c}}
$$

