$\mathrm{P} \wedge \mathrm{H}$

Higgs Self-Coupling and Yukawa Corrections to Higgs Boson Pair Production

Matthias Kerner
Loops and Legs — Wittenberg, 15. April 2024

in Collaboration with Gudrun Heinrich, Stephen Jones, Thomas Stone, Augustin Vestner

Motivation

Measurements of Higgs boson pair production is important
\rightarrow direct relation to Higgs potential
\rightarrow test mechanism of EW symmetry breaking

$$
V(\Phi)=\frac{1}{2} \mu^{2} \Phi^{2}+\frac{1}{4} \lambda \Phi^{4} \xrightarrow[\text { breaking }]{\text { EW symmetry }} \frac{m_{H}^{2}}{2} H^{2}+\frac{m_{H}^{2}}{2 v} H^{3}+\frac{m_{H}^{2}}{8 v^{2}} H^{4}
$$

Electroweak corrections

- typically \mathcal{O} (few \%), but can be larger on differential level
- challenging calculation, with many diagrams and masses

NLO QCD corrections

full SM

NLO QCD
[Borowka, Greiner, Heinrich, Jones, MK,
Schlenk, Schubert, Zirke 16]
[Baglio, Campanario, Glaus, Mühlleitner,
Ronca, Spira, Streicher 18]

NNLO HTL \otimes NLO QCD
[Grazzini, Heinrich, Jones, Kallweit, MK, Lindert, Mazzitelli 18]
N3LO HTL \otimes NLO QCD
[Chen, Li, Shao, Wang 19]

NNLO HTL
[De Florian, Mazzitelli 13]
[Grigo, Melnikov, Steinhauser 14]
N3LO HTL
[Chen, Li, Shao, Wang 19]
\rightarrow NLO QCD corrections to $g g \rightarrow H H$ production known with high accuracy

NLO EW progress

recently, huge progress towards NLO EW corrections to $g g \rightarrow H H$

- partial results:

Effects of quartic Higgs coupling [Bizoń, Haisch, Rottoli 18,24]
Higgs self-coupling corrections [Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao 19]
Top-Yukawa corrections, using HTL for parts of the calculation [Mühlleitner, Schlenk, Spira 22]

- approximate results:

Top-Yukawa corrections in the high-energy limit [Davies, Mishima, Schönwald, Steinhauser, Zhang, 22]
EW corrections in large- m_{t} limit [Davies, Schönwald, Steinhauser, Zhang, 23] \rightarrow talk by Hantian Zhang

- full EW corrections [Bi, Huang, Huang, Ma, Yu 23]

```
this talk: EW corrections due to Higgs Self-Coupling and Yukawa corrections
```


Self-Coupling \& Yukawa Corrections

We calculate Higgs Self-Coupling and Yukawa corrections to $g g \rightarrow H H$ production $\hat{=}$ gauge-less limit $g_{1}, g_{2} \rightarrow 0 \quad \Rightarrow \quad$ EW gauge bosons decouple interactions in unitary gauge

example diagrams

no real radiation: since $g g \rightarrow H H H$ - finite

- different experimental signature

Amplitude Structure

Form Factor decomposition of $g g \rightarrow H H$ amplitude: [Glover, van der Bij `88]

$$
\begin{aligned}
& \mathscr{M}_{a b}=\delta_{a b} \varepsilon_{1}^{\mu} \varepsilon_{2}^{\nu} \mathscr{M}_{\mu \nu} \\
& \mathscr{M}^{\mu \nu}=F_{1}\left(s, t, m_{h}^{2}, m_{t}^{2} ; d\right) T_{1}^{\mu \nu}+F_{2}\left(s, t, m_{h}^{2}, m_{t}^{2} ; d\right) T_{2}^{\mu \nu} \\
& \text { with } \\
& \quad T_{1}^{\mu \nu}=g^{\mu \nu}-\frac{p_{1}^{\nu} p_{2}^{\mu}}{p_{1} \cdot p_{2}} \\
& \quad T_{2}^{\mu \nu}=g^{\mu \nu}+\frac{1}{p_{T}^{2}\left(p_{1} \cdot p_{2}\right)}\left\{m_{h}^{2} p_{1}^{\nu} p_{2}^{\mu}-2\left(p_{1} \cdot p_{3}\right) p_{3}^{\nu} p_{2}^{\mu}-2\left(p_{2} \cdot p_{3}\right) p_{3}^{\mu} p_{1}^{\nu}+2\left(p_{1} \cdot p_{2}\right) p_{3}^{\nu} p_{3}^{\mu}\right\}
\end{aligned}
$$

corresponding to helicity amplitudes

$$
\begin{aligned}
& \mathscr{M}^{+-}=\mathscr{M}^{-+}=-F_{1} \\
& \mathscr{M}^{++}=\mathscr{M}^{--}=-F_{2}
\end{aligned}
$$

obtained using projectors $F_{i}=P_{i}^{\mu \nu} \mathscr{M}_{\mu \nu}$ checked by 2 independent calculations, using: - alibrary [V. Magerya]

- Reduze 2 [v. Manteuffel, Studerus]
keep dependence on coupling constants $g_{H t \bar{t}}, \quad g_{H^{3}}, \quad g_{H^{4}} \rightarrow$ can be used for EFT studies

Integral Reduction

The Loop Integrals are reduced to Master Integrals using IBP relations [Tkachov 81; Chetyrkin 81]

$$
\int \mathrm{d}^{d} p_{i} \frac{\partial}{\partial p_{i}^{\mu}}\left[q^{\mu} \mathbf{I}^{\prime}\left(p_{1}, \ldots, p_{l} ; k_{1}, \ldots, k_{m}\right)\right]=0
$$

Using the programs - Kira [Klappert, Lange, Maierhöfer, Usovitsch]

- FireFly [Klappert, Klein, Lange]
- Ratracer [V. Magerya]
\downarrow
record each arithmetic operation performed during Gaussian elimination, use this 'trace' to speed up black-box probes

We obtained the full symbolic reduction

- depending on 5 parameters: $s, t, m_{h}^{2}, m_{t}^{2}, d$
currently using simplified version for evaluation of amplitude, with $\frac{m_{h}^{2}}{m_{t}^{2}}=\frac{12}{23}$ fixed $\rightarrow m_{h}=125 \mathrm{GeV}, m_{t}=173.1 \mathrm{GeV}$
- 494 master integrals, up to 11 masters/sector
- size of reduced amplitude:
8.5 GB (with m_{h} / m_{t} fixed)

100 GB (full m_{h}, m_{t} dependence)

Improved Basis of Master Integrals

- Use a (quasi-)finite basis of master integrals [von Manteuffel, Panzer, Schabinger 14]
- simplifies numerical evaluation of integrals
- poles in ε only in coefficients
- requires integrals in shifted dimensions [Bern, Dixon, Kosower 92; Tarasov 96; Lee 10]
- Further improvements of integral basis to achieve:
(by trying different basis choices for each sector)
- d-dependence factorizes from kinematic dependence in denominators of reduction coefficients

$$
\frac{N(s, t, d)}{D_{1}(d) D_{2}(s, t)}
$$

[Smirnov, Smirnov `20; Usovitsch `20]

- simple denominator factors D_{1}, D_{2}
- avoid poles in coefficients of integrals in top-level sectors as far as possible
\rightarrow no poles in 7-propagator sectors
\rightarrow no poles in non-planar sectors
- avoid poles in DEQs
\rightarrow huge impact on evaluation time

$$
\mathcal{O}(100 \mathrm{~h}) \quad \rightarrow \quad \mathcal{O}(5 \mathrm{~min})
$$

pySecDec

[Heinrich, Jones, MK, Magerya, Olsson, Schlenk]
A toolbox for the calculation of dimensionally regulated parameter integrals

Method:

- Sector decomposition [Binoth, Heinrich `00] factorizes overlapping singularities

$$
\int_{0}^{1} d x d y \frac{1}{(x+y)^{2+\varepsilon}}[\theta(x-y)+\Theta(y-x)]=\int_{0}^{1} d x d t \frac{1}{x^{1+\varepsilon}(1+t)^{2+\varepsilon}}+\int_{0}^{1} d y d t \frac{1}{y^{1+\varepsilon}(1+t)^{2+\varepsilon}}
$$

- Subtraction of poles \& expansion in $\boldsymbol{\varepsilon}$

$$
\int_{0}^{1} d x x^{-1-\varepsilon} g(x)=-\frac{1}{\varepsilon} g(0)+\int_{0}^{1} d x x^{-1-\varepsilon}[g(x)-g(0)]
$$

- Contour deformation [Soper 00; Binoth et al. 05; Nagy, Soper 06, Anastasiou et al. 07; Borowka et al. 12] analytic continuation from Euclidean to physical region
\rightarrow finite integrals at each order in ε
\rightarrow numerical integration possible

pySecDec - New in version 1.6

- New Quasi-Monte Carlo evaluator 'Disteval' up to $10 x$ faster than previous versions, due to
- better utilization of GPU
- SIMD instructions on CPU
- various code improvements

- Improved handling of coefficients of master integrals
- coefficients now parsed with $\mathrm{GiNaC} \rightarrow$ more flexible, use rational numbers to avoid precision loss
- sums of integrals can be named
- Auto-detect if extra regulators required for expansion-by-region
- Construction-free Median QMC lattices

Quasi-Monte Carlo Integration

Integration using rank-1 lattice rule

$$
I[f] \approx I_{k}=\frac{1}{N} \cdot \sum_{i=1}^{N} f\left(\mathbf{x}_{i, k}\right), \quad \mathbf{x}_{i, k}=\left\{\frac{i \cdot \mathbf{z}}{N}+\boldsymbol{\Delta}_{k}\right\}
$$

$$
\{\ldots\}=\text { fractional part }(\rightarrow x \in[0 ; 1[)
$$

$$
\boldsymbol{\Delta}_{k}=\text { randomized shifts }
$$

$\rightarrow m$ different estimates of Integral: I_{1}, \ldots, I_{m}
\rightarrow error estimate of result
$\mathbf{z}=$ generating vector constructed component-by-component Nuyens `07 minimizing worst-case error ϵ_{γ}

Review: Dick, Kuo, Sloan 13
First application to loop integrals: Li, Wang, Yan, Zhao 15
\rightarrow integration error scales as $\mathcal{O}\left(n^{-1}\right)$ or better

Quasi-Monte Carlo Integration

pre-computed generating vectors \mathbf{z} with component-by-component construction:

- lattice size limited by largest generating vector
- guaranteed $\mathcal{O}\left(n^{-1}\right)$ scaling, but can encounter 'unlucky' combination of lattice \& integrand

Quasi-Monte Carlo Integration

pre-computed generating vectors \mathbf{z} with component-by-component construction:

- lattice size limited by largest generating vector
- guaranteed $\mathcal{O}\left(n^{-1}\right)$ scaling, but can encounter 'unlucky' combination of lattice \& integrand
alternative method (since pySecDec v.1.6): Construction-free median QMC [Goda, L'Ecuyer 22]
- choose r generating vectors \mathbf{z}_{i}
with entries chosen randomly from $\{1 \leq z \leq n-1 \mid \operatorname{gcd}(z, n)=1\}$
- calculate $I_{i}=\int f$ for each generating vector \mathbf{z}_{i}
- select \mathbf{z}_{i} corresponding to median $\left(I_{1}, \ldots, I_{r}\right)$ for integration (with m random shifts)
- same scaling as \mathbf{z} from CBC construction (with high probability)

Code Generation \& Evaluation

Generation of integration library, e.g. for 1-loop amplitude:

```
import pySecDec as psd
if __name__ == '__main__':
    # int1 = box(p1,p2,p3)
    int1 = psd.LoopPackage(
        name = "box1",
            loop_integral = psd.loop_integral.LoopIntegralFromPropagators(
                loop_momenta = ["k"], external_momenta = ["p1", "p2", "p3"],
                replacement_rules = [('p1*p1', 0), ('p1*p2', "s/2"), ...]))
    coeff_F1_int1 = "4*mt2**2*(8*mt2-s-2*mh2)"
    coeff_F2_int1 = ".."" coefficients, may also depend on }\mathcal{E
    # int2 = box(p2,p1,p3)
    int2 = psd.LoopPackage(
            name = "box2",
            loop_integral = psd.loop_integral.LoopIntegralFromPropagators(
                propagators = ["k**2-mt2", "(k+p2)**2-mt2", "(k+p1+p2)**2-mt2", "(k+p1+p2+p3)**2-mt2"],
                loop_momenta = ["k"], external_momenta = ["p1", "p2", "p3"],
                replacement_rules = [('p1*p1', 0), ('p1*p2', "s/2"), ... ]))
    coeff_F1_int2 = "..."
    coeff_F2_int2 = "..."
    # int 3, ...
    # define form factors as sums of (coeff * integral)
    psd.sum_package('HH1L',
            [int1, int2, ...],
            coefficients = {"F1": [coeff_F1_int1, coeff_F1_int2, ...], 隹,
            regulators = ["eps"],
            requested_orders = [0],
            real_parameters = ['s', 't', 'mh2', 'mt2']
    )
```

 propagators \(=[" k * * 2-m t 2 ", ~ "(k+p 1) * * 2-m t 2 ", ~ "(k+p 1+p 2) * * 2-m t 2 ", ~ "(k+p 1+p 2+p 3) * * 2-m t 2 "]\)
) define form factors as weighed sum of integrals

$$
F_{i}=\sum_{j} c_{i j} I_{j}
$$

\#sampling points per integral will automatically be optimized during evaluation

Compilation: make -C HH1L disteval SECDEC_WITH_CUDA_FLAGS="-arch=sm_80" enable GPU support

Evaluation: python3 -m pySecDec.disteval HH1L/disteval/HH1L.json --epsrel=0.001 s=... t=......

Renormalization \& Input Parameters

Renormalization:

- on-shell renormalization for masses and fields

$$
\begin{aligned}
H_{0} & =Z_{H}^{1 / 2} H & m_{H, 0}^{2} & =Z_{m_{H}^{2}} m_{H}^{2} \\
t_{0} & =Z_{t}^{1 / 2} t & m_{t, 0} & =Z_{m_{t}} m_{t}
\end{aligned}
$$

- vev renormalization according to G_{μ} scheme $v \rightarrow v+\Delta v \quad$ [see e.g. Biekötter, Pecjak, Scott, Smith 22] with $M_{Z}, M_{W} \rightarrow 0$, corresponding to gauge-less limit

$\sim \frac{m_{H}^{2}}{v^{2}}$
\rightarrow corresponds to expansion in $\frac{1}{v}$
- Fleischer-Jegerlehner tadpole prescription

Input parameters:

- $\sqrt{s}=13.6 \mathrm{TeV}$
- $m_{H}=125 \mathrm{GeV}, \quad m_{t}=\sqrt{23 / 12} m_{H} \approx 173.1 \mathrm{GeV}$
- CT18nlo pdf \& α_{s}, with $\mu_{R}=\mu_{F}=\frac{m_{H H}}{2}$
- $G_{F}=1.166379 \cdot 10^{-5} \mathrm{GeV}^{-2}$

Results

$m_{H H}$ distribution:

Technical Details:

- ~2000 sampling points
distributed according to unweighted LO events
- median integration time: 5 min . for 0.1% precision using 1 Nvidia Tesla A100 GPU
for some points close to $m_{H H} \approx 2 m_{t}$: 1d for $\mathcal{O}(1-10 \%)$
- $\sim 5 \mathrm{~min}$. to parse coefficients on 8 CPU cores
- using rationalized kinematics s, t to avoid numerical instabilities
- full d-dependence kept in coefficients
\rightarrow can be improved by expansion in ε
$\rightarrow+50 \%$ correction at $m_{H H} \approx 2 m_{t}$
-10% correction at large $m_{H H}$

Alternative Method

We also consider the solution of the DEQs [A. Kotikov 91] as generalized series expansions [F. Moriello 19] using the package DiffExp [M. Hidding 20]

- might be useful for phase-space regions where convergence with pySecDec slow
- can produce slices in phase space
- agreement of pySecDec and DiffExp
verified for various integrals
- For some sectors, we need to set

HomogeneousSolve \rightarrow DontExpand IntegrationStrategy \rightarrow VariationOfParameters
\rightarrow use original system $\partial_{x} \vec{g}=\mathbf{M} \vec{g}$ instead of $\partial_{x}^{j} \vec{g}=\mathbf{M}^{(j)} \vec{g}$ don't expand \mathbf{M}
\rightarrow works, but much slower,
further investigations needed (work in progress)

Summary \& Outlook

Higgs Self-Coupling and Yukawa Corrections to HH Production

- Calculation using various state-of-the-art tools:
- full symbolic reduction using Kira, Firefly \& Ratracer depending on 5 variables s, t, m_{H}, m_{t}, d 494 master integrals
- loop integrals evaluated numerically using pySecDec 5 min . median integration time using 1 Nvidia Tesla A100 GPU
- Large positive correction at $m_{H H} \approx 2 m_{t} ;-10 \%$ at large $m_{H H}$
- Future Plans:
- comparison to EW corrections by other groups
- full NLO EW corrections
- include EFT operators
- study b-mass effects

Backup

\sqrt{s}	LO	B-i. NLO HEFT	NLO FT $_{\text {approx }}$	NLO
14 TeV	$19.85_{-20.5 \%}^{+27.6 \%}$	$38.32_{-14.9 \%}^{+18.9 \%}$	$34.26_{-13.7 \%}^{+14.7 \%}$	$32.91_{-12.6 \%}^{+13.6 \%}$
100 TeV	$731.3_{-15.9 \%}^{+20.9 \%}$	$1511_{-13.0 \%}^{+13.0 \%}$	$1220_{-10.9 \%}^{+11.9 \%}$	$1149_{-10.0 \%}^{+10.8 \%}$

-14\% wrt. NLO HEFT -4% wrt. NLO FT ${ }_{\text {approx }}$

FTapprox

LO and real radiation with full m_{t} dependence,
approximate virtual corrections via $\quad \mathrm{d} \sigma_{\mathrm{V}}^{\mathrm{FT}}{ }^{\text {approx }}\left(m_{t}\right) \approx \frac{\mathrm{d} \sigma_{\mathrm{B}}^{\mathrm{SM}}\left(m_{t}\right)}{\mathrm{d} \sigma_{\mathrm{B}}^{\mathrm{HTL}}\left(m_{t} \rightarrow \infty\right)} \mathrm{d} \sigma_{\mathrm{V}}^{\mathrm{HTL}}\left(m_{t} \rightarrow \infty\right)$

large dependence of K-factor on $m_{h h}$

NNLO \& N ${ }^{3}$ LO

Grazzini, Heinrich, Jones, Kallweit, MK, Lindert, Mazzitelli 18 combination with NNLO $\left(m_{t} \rightarrow \infty\right)$

\rightarrow approx. m_{t} dependence at NNLO

3 different methods:

1) $\mathrm{NNLO}_{\mathrm{nLO}-\mathrm{i}}$
rescale NLO by $\mathrm{K}_{\text {NNLO }}=$ NNLO $_{\text {heft }} / \mathrm{NLO}_{\text {heft }}$
2) $\mathrm{NNLO}_{\text {b-proj }}$
project all real radiation contributions
to Born configuration, rescale by LO/LO HEFT
3) $\mathrm{NNLO}_{\text {ftapprox }}$
calculate NNLO $_{\text {HEFT }}$ and for each multiplicity
rescale by $\quad \mathcal{R}(i j \rightarrow H H+X)=\frac{\mathcal{A}_{\text {Full }}^{\text {Borl }}(i j \rightarrow H H+X)}{\mathcal{A}_{\mathrm{HEFT}}^{(0)}(i j \rightarrow H H+X)}$
even $\mathrm{N}^{3} \mathrm{LO}_{\mathrm{nLL}}-\mathrm{i}$ is known
Chen, Li, Shao, Wang 19

\sqrt{s}	13 TeV
$\mathrm{NLO}_{m_{t}}$	$27.56_{-13 \%}^{+14 \%}$
$\mathrm{NNLO} \oplus \mathrm{NLO}_{m_{t}}$	$32.16_{-5.9 \%}^{+5.9 \%}$
$\mathrm{NNLO}_{\mathrm{B}-\mathrm{i}} \oplus \mathrm{NLO}_{m_{t}}$	$33.08_{-4.9 \%}^{+5.0 \%}$
$\mathrm{NNLO} \otimes \mathrm{NLO}_{m_{t}}$	$32.47_{-7.8 \%}^{+5.3 \%}$
$\mathrm{N}^{3} \mathrm{LO} \oplus \mathrm{NLO}_{m_{t}}$	$33.06_{-2.9 \%}^{+2.1 \%}$
$\mathrm{N}^{3} \mathrm{LO}_{\mathrm{B}-\mathrm{i}} \oplus \mathrm{NLO}_{m_{t}}$	$34.17_{-4.6 \%}^{+1.9 \%}$
$\mathrm{N}^{3} \mathrm{LO} \otimes \mathrm{NLO}_{m_{t}}$	$33.43_{-2.8 \%}^{+0.66 \%}$

Mass Scheme Uncertainties

So far, all results used OS renormalization of m_{t},
but also other schemes, e.g. $\overline{\mathrm{MS}}$ valid \rightarrow additional mass scheme uncertainty

NLO predictions in $\overline{\mathrm{MS}}$ scheme

Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 19,20

$$
\begin{aligned}
& \left.\frac{d \sigma(g g \rightarrow H H)}{d Q}\right|_{Q=300 \mathrm{GeV}}=0.0312(5)_{-23 \%}^{+9 \sigma_{6}} \mathrm{fb} / \mathrm{GeV} \\
& \left.\frac{d \sigma(g g \rightarrow H H)}{d Q}\right|_{Q=1200 \mathrm{GeV}}=0.000435(4)_{-30 \%}^{+0 \%} \mathrm{fb} / \mathrm{GeV}
\end{aligned}
$$

large scheme uncertainties at large m_{H} (larger than μ_{R}, μ_{F} dependence)

full HH EW

