Two-loop virtual amplitudes for qq→ttH production (the N_f-part)

Vitaly Magerya

With B. Agarwal, G. Heinrich, S.P. Jones, M. Kerner, S.Y. Klein, J. Lang, A. Olsson

Loops and Legs 2024, April 19, Wittenberg

1

ttH production at the LHC

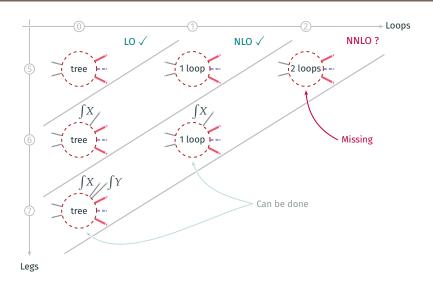
At the tree level:

First observation at LHC reported in 2017. [ATLAS '17, '17, '18, '20, '23; CMS '18, '18, '20, '20, '22] Measurements based on data from LHC Run 2 (2015–2018):

	$\sigma_{t ar{t} H}/\sigma_{t ar{t} H, SM}$			L	\boldsymbol{H} decay channels
ATLAS '18	1.32	^{+0.18} _{-0.18} (stat)	^{+0.21} _{-0.19} (syst)	$79.8{\rm fb}^{-1}$	γγ, bb, WW, ZZ
ATLAS '20	1.43	^{+0.33} _{-0.31} (stat)	+0.21 -0.15(syst)	$139{\rm fb}^{-1}$	γγ
CMS '20	1.38	^{+0.29} _{-0.27} (stat)	$^{+0.21}_{-0.11}$ (syst)	$137{\rm fb}^{-1}$	γγ
CMS '20	0.92	^{+0.19} _{-0.19} (stat)	+0.17 -0.13(syst)	$137{\rm fb}^{-1}$	WW , $\tau\tau$, ZZ

HL-LHC will have $\mathscr{L} \sim 3000\,\mathrm{fb}^{-1}$, reducing statistical uncertainty by 4-5x. To reduce systematic uncertainty: NNLO calculation is needed.

Parts of an NNLO calculation



Big missing part for NNLO: two-loop virtual amplitudes.

Theory results for ttH production

NLO QCD, parton shower

NLO QCD+EW

NLO QCD+EW, NWA

NLO QCD, off-shell

NLO:

* NLO QCD [Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas '01]

[Reina, Dawson '01]

[Reina, Dawson, Wackeroth '01]

[Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas '02]

[Dawson, Jackson, Orr, Reina, Wackeroth '03]

[Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli '11]

[Garzelli, Kardos, Papadopoulos, Trocsanyi '11]

[Hartanto, Jager, Reina, Wackeroth '15]

[Frixione, Hirschi, Pagani, Shao, and Zaro '14]

[Zhang, Ma, Zhang, Chen, Guo '14]

[Frixione, Hirschi, Pagani, Shao, and Zaro '15]

[Denner, Feger '15]

[Stremmer, Worek '21]

[Denner, Lang, Pellen '20]

[Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek '22]

Theory results for ttH production, II

NLO, contd.:

NLO+NLL QCD [Kulesza, Motyka, Stebel, Theeuwes '15] [Ju, Yang '19] NLO+NNLL QCD [Broggio, Ferroglia, Pecjak, Signer, Yang '15] [Broggio, Ferroglia, Pecjak, Yang '16] [Kulesza, Motyka, Stebel, Theeuwes '17] NLO QCD+SMEFT [Maltoni, Vryonidou, Zhang '16] NLO QCD+EW. off-shell [Denner, Lang, Pellen, Uccirati '16] NLO+NNLL QCD+EW [Broggio, Ferroglia, Frederix, Pagani, Peciak, Tsinikos '19] NLO QCD to $\mathcal{O}(\varepsilon^2)$ [Buccioni, Kreer, Liu, Tancredi '23] * $t \to H$ fragmentation functions at $\mathcal{O}(y_t^2 \alpha_s)$

[Brancaccio, Czakon, Generet, Krämer '21]

Theory results for ttH production, III

NNLO:

- * NNLO QCD, flavour off-diagonal [Catani, Fabre, Grazzini, Kallweit '21]
- * NNLO QCD total cross-section, soft Higgs

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '22]

- * Two-loop QCD virtual amplitude, IR poles [Chen, Ma, Wang, Yang, Ye '22]
- st Leading N_c two-loop QCD master integrals, n_l -part

[Cordero, Figueiredo, Kraus, Page, Reina '23]

[Wednesday talk by B. Page]

* Two-loop QCD virtual amplitude, high-energy boosted limit

[Wang, Xia, Yang, Ye '24]

* Two-loop QCD virtual amplitude, $qar{q}$ channel, n_l - and n_h -parts

[Agarwal, Heinrich, Jones, Kerner, Klein, Lang, V.M., Olsson '24]

[This talk!]

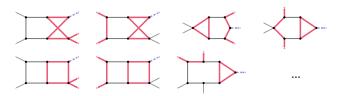
The amplitude

Model: QCD with a scalar H, n_l light (massless) quarks, n_h heavy (top) quarks. Amplitude of $q\bar{q}\to t\bar{t}H$ projected onto Born, and decomposed in α_s as

$$\langle \mathsf{AMP} \, | \, \mathsf{AMP}_\mathsf{tree} \rangle = \mathscr{A} + \left(\frac{\alpha_s}{2\pi}\right) \mathscr{B} + \left(\frac{\alpha_s}{2\pi}\right)^2 \mathscr{C}.$$

As a proof-of-concept: only parts proportional to n_l or n_h in $\mathscr C$ for now. Why is the calculation complicated?

- 1. IBP reduction of the amplitude to master integrals is too complicated to be computed symbolically (at the moment).
 - * 5 legs and 2 masses $(m_t, m_H) \Rightarrow$ 7 scales (6 scaleless variables).
- 2. Massive two-loop integrals contributing to $\mathscr C$ are not known analytically.



Calculation method

- 1. Generate all Feynman diagrams for $q\bar{q} \to t\bar{t}H$ at two loops.
- [QGRAF]

[ALIBRARY]

- \Rightarrow 249 non-zero diagrams (of 702 for the full $qar{q}$ channel).
- 2. Insert Feynman rules, apply the projector | AMP_{tree} >.
- 3. Sum over the spinor and color tensors. [FORM; COLOR.H]
 - \Rightarrow ~20000 scalar integrals (of ~90000);
 - ⇒ 9 structures: $\{n_h|n_I\} C_A C_F N_c$, $\{n_h|n_I\} C_F^2 N_c$, $\{n_h|n_I\} d_{33}$, $\{n_h|n_I\}^2 C_F N_c$;

 * 6 structures not included: $C_A^2 C_F N_c$, $C_A C_F^2 N_c$, $C_A^2 C_A^2 C_A^2$
- 4. Resolve integal symmetries, construct integral families. [FEYNSON; ALIBRARY]
 - \Rightarrow 44 families, 28 up to external leg permutation (of 89 and 39).

•••

Calculation method, II

5. Figure out master integral count in each sector.

[KIRA]

- \Rightarrow 831 master integrals in total (of 3005);
- \Rightarrow up to 8 integrals per sector (up to 13 for the full $q\bar{q}$ channel).
- 6. Optimize the choice of masters: find a basis that is
 - * quasi-finite.

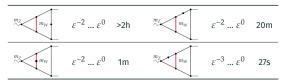
[von Manteuffel, Schabinger '14]

* d-factorizing,

[Smirnov, Smirnov '20; Usovitsch '20]

- * "simple" in the sense of resulting IBP coefficients, [Monday talk by M. Kerner]
- * fast to evaluate with pySecDec.
- \Rightarrow Need to consider denominator powers up to 6, and dimensional shifts to $d=6-2\varepsilon$ and $d=8-2\varepsilon$.

For example, pySecDec integration time to 10^{-3} precision:¹



•••

¹pySecDec 1.5.3, NVidia A100 GPU.

Calculation method, III

- 7. Generate IBP relations, dimensional recurrence relations. [KIRA; ALIBRARY]
- 8. Precompute ("trace") the IBP solution for each family with Rational Tracer.

 [RATRACER]
- Precompile the <u>pySecDec</u> integration library for the amplitude pieces.
 [pySecDec]
 - * Each color structure as a separate weighted sum of the master integrals.
- 10. For each point in the phase space:
 - 10.1 Solve IBP relations using the precomputed trace (with RATRACER).
 - * Each variable set to a rational number.
 - 10.2 Evaluate the amplitudes as weighted sums of masters (with pySECDEC).
 - * The weights are taken from the IBP solution.
 - 10.3 Apply renormalization and pole subtraction.

[Ferroglia, Neubert, Pecjak, Yang '09; Bärnreuther, Czakon, Fiedler '13]

10.4 Save the result.

Solving IBP with Rational Tracer

Basic finite field method:

[von Manteuffel, Schabinger '14; Peraro '16]

- 1) solve IBP equations many times using modular arithmetic with variables set to integers modulo a 63-bit prime;
 - * same sequence of operations, many times, with different numbers;
- 2) reconstruct the coefficients as rational functions from the many samples.

Observation: modular arithmetic is so fast, that typical solvers waste 90% of the time managing their data structures (not performing the arithmetic).

To cut the waste: abandon the data structures:

- * solve the system *once* using modular artihmetics, and *record every* arithmetic operation into a file (a "trace");
- * instead of re-solving the system from scratch, just replay the trace.

Implementation: Rational Tracer (RATRACER).

[V.M. '22]

- * github.com/magv/ratracer
- * Around 10x faster black-box evaluation than KIRA.

[Thursday talk by F. Lange]

Solving IBP with Rational Tracer, II

Additional tricks with traces:

- * A trace can be optimized via common subexpression elimination, constant propagation, and dead code elimination.
- * A trace can be expanded in ε , producing a new trace that
 - st outputs the arepsilon expansion of the IBP coefficients directly,
 - * drops ε from the list of considered variables.
 - ⇒ 3x-4x performance gain for this calculation.

In our case (all variables set to numbers, ε eliminated via expansion):

- * No function reconstruction needed, each output is a rational number.
- * Under 2 CPU minutes per point (scales well with threads).
 - * Down from ~1 hour on 16 cores with KIRA 2.3+FIREFLY!
 - $\ast~$ Fast enough that we don't need symbolic IBP results.

Amplitude evaluation with pySecDec

pySECDEC: library for numerically evaluating Feynman integrals via sector decomposition and (Quasi-) Monte Carlo integration. [Heinrich et al '23, '21, '18, '17]

- * github.com/gudrunhe/secdec
- * Takes a specification for *weighted sum of integrals* (i.e. amplitudes), produces an integration library.
 - * One sum per color structure.
 - * Integrals sampled adaptively to reach the requested precision of the sums.
 - * The 831 masters decompose into \sim 18000 sectors (\sim 28000 integrals).
- * Around 4x-5x speedup in version 1.6 with the new integrator "disteval".
- * Integration time to get 0.3% precision for this calculation on a GPU:
 - * from 5 minutes in the bulk of the phase-space,
 - * to ∞ near boundaries (e.g. high-energy region) due to growing cancellations and spiky integrals (capped at 1 day).

Dealing with large cancellations

Large cancellations in parts of the high-energy region, e.g.:

$$\mathcal{C} = 10^{29} + 10^{29} + 10^{29} + 10^{24} + 10^{24} + 10^{24} + 10^{19} + 10^{19} + 10^{19} + 10^{19} + 10^{19}$$

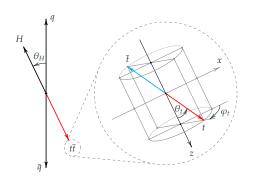
- * Knowing the integrals at full double precision (16 digits) is not enough!
- * The cancelling integrals are simple and converge well (with QMC).
- ⇒ Make pySecDec use *double-double* (32 digits) for integrals that need it:
 - * 20+ digits of precision for 4-propagator integrals reachable;
 - * custom implementation for CPUs and GPUs;
 - * around 20x performance hit compared to doubles.

Phase-space parameters

We parameterize the $q \bar q o t \bar t H$ phase space as chained decay, and instead of

$$\begin{split} s &= \left(p_q + p_{\bar{q}} \right)^2 \in \left[\left(2m_t + m_H \right)^2 ; \infty \right], \\ s_{t\bar{t}} &= \left(p_t + p_{\bar{t}} \right)^2 \in \left[\left(2m_t \right)^2 ; \left(\sqrt{s} - m_H \right)^2 - \left(2m_t \right)^2 \right], \end{split}$$

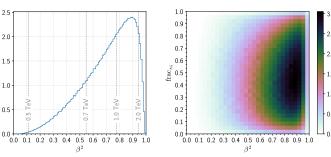
introduce:



$$\begin{split} \beta^2 &\equiv 1 - \frac{s_{min}}{s} \in [0;1], \\ \operatorname{frac}_{s_{t\bar{t}}} &\equiv \frac{s_{t\bar{t}} - s_{t\bar{t},min}}{s_{t\bar{t},max} - s_{t\bar{t},min}} \in [0;1], \\ \theta_H &\in [0;\pi], \\ \theta_t &\in [0;\pi], \\ \varphi_t &\in [0;2\pi]. \end{split}$$

Which parts of the phase-space are relevant?

Event density at the LHC according to the tree-level amplitude:



To cover 90% of events: $\beta^2 \in$ [0.34, 0.95], that is $\sqrt{s} \in$ [580 GeV, 2.1 TeV].

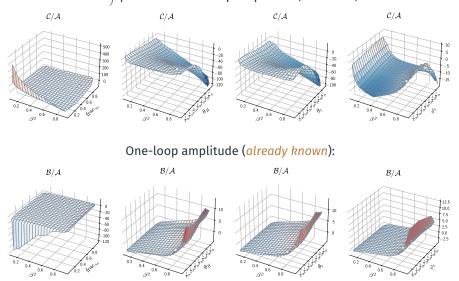
Example results as two-dimensional slices around the center point of:

$$\begin{split} \beta^2 &= 0.8, & \text{frac}_{s_{t\bar{t}}} &= 0.7, \\ \cos\theta_H &= 0.8, & \cos\theta_t &= 0.9, & \cos\varphi_t &= 0.7, \\ m_H^2 &= 12/23\,m_t^2, & \mu &= s/2. \end{split}$$

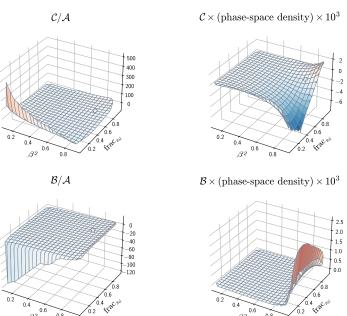
16

Resulting slices in β^2 and ${\rm frac}_{s_{t\bar{t}}}$, θ_H , $\overline{\theta_t}$, $\overline{\phi_t}$

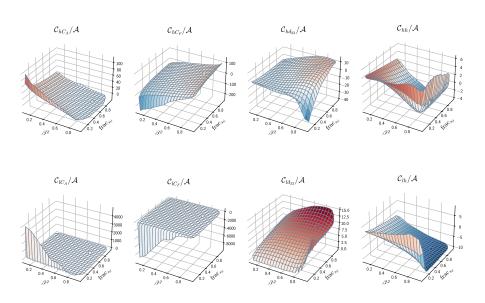




Resulting slices in eta^2 and $\mathrm{frac}_{s_{tar{t}}}$



Resulting slices in β^2 and $\mathrm{frac}_{s_{i\pi}}$ by color factor

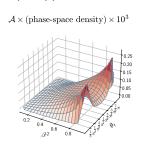


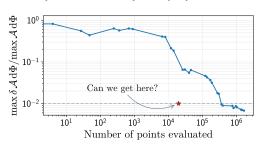
How to use the results?

Goal: precompute points on a 5-dimensional grid, interpolate in between.

- * How few points do we need to evaluate for 1% approximation error?
- * Which interpolation method fits best?
 - * Splines, spectral polynomials, rationals, sparse grids, radial basis functions, compressed sensing, neural networks?
- * At which points to sample?
 - * Random unweighted samples, regular grids, sparse grids, Padua points, Fekete points, locally adaptive?

Example approximation error of ${\mathscr A}$ by naive 5d Chebyshev polynomials:





Summary & Outlook

Done:

- * N_f -part of the two-loop virtual amplitude for $q\bar{q} \to t\bar{t}H$.
- * Peformace and precision improvements in pySecDec.
- * Faster IBP solving with RATRACER.

In progress:

- * The rest of the two-loop virtual amplitude for $q\bar{q} \to t\bar{t}H$.
- * Interpolation for the results.

To do:

- * Two-loop virtual amplitude for $gg \rightarrow t\bar{t}H$.
- * Combination with real radiation.
- * Phenomenological applications.

Backup slides

Amplitude library

Most of this work is glued by ALIBRARY ("Amplitude Library"). It provides functions and interfaces to tools for multiloop calculations in Mathematica:

- * Diagram generation and visualization (QGRAF, GRAPHVIZ, TIKZ).
- * Feynman rule insertion.
- * Tensor trace summation (FORM, COLOR.H).
- * Integral symmetries, IBP families (FEYNSON).
- * Export to/from IBP solvers (KIRA, FIRE+LITERED).
- * Export to/from pySecDec.

github.com/magv/alibrary

