

Complete NLO corrections to top-quark pair production with isolated photons

MALGORZATA WOREK

Loops and Legs in Quantum Field Theory, 14–19 April 2024, Lutherstadt Wittenberg

OUTLINE

FOCUS OF THIS TALK:

- Top-quark pair production with isolated photons: $pp \rightarrow tt\gamma \& pp \rightarrow tt\gamma\gamma$
 - Top-quark decay channel \rightarrow *Di-lepton*
 - Modelling of unstable top quarks and *W* bosons $\rightarrow NWA$
 - NLO $QCD \rightarrow QCD$ corrections & photon radiation in production & decays
 - *Complete NLO* → QCD & EW corrections & photon radiation in production & decays

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 10 (2018) 158 Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154 Stremmer, Worek, JHEP 08 (2023) 179 Stremmer, Worek e-Print: 2403.03796 [hep-ph]

ADDITIONAL RESULTS WITH HELAC-NLO NOT DISCUSSED DURING THIS TALK

- NLO QCD results for $pp \rightarrow tt\gamma$
 - Full off-shell predictions for *di-lepton* decay channel
- NLO QCD results for $pp \rightarrow tt\gamma\gamma$
 - Results in NWA available also for *l+jets* decay channel

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 10 (2018) 158

Stremmer, Worek, JHEP 08 (2023) 179

EXPERIMENTAL RESULTS

$pp \rightarrow tt\gamma$

- *ttγ* has been observed @ *LHC* @ 7 *TeV* by ATLAS
- Both ATLAS and CMS have observed *ttγ* @ *LHC* @ 8 *TeV* & 13 *TeV*
- No significant deviations from SM predictions have been found
 - Measured cross sections are larger than theoretical predictions
 - Within current uncertainties differential cross-section distributions described suficently well by NLO theory predictions
- Measurements in $pp \rightarrow tt\gamma$ process have also been interpreted in framework of SMEFT
- Measurement of top-quark charge asymmetry in $pp \rightarrow tt\gamma$ has recently been performed by ATLAS

$pp \rightarrow tt\gamma\gamma$

- No observation for $pp \rightarrow tt\gamma\gamma$ process @ LHC yet
- Observation of $pp \rightarrow ttH \rightarrow tt\gamma\gamma$

THEORETICAL PREDICTIONS

PREDICTIONS WITH STABLE TOP QUARKS

NLO QCD corrections

Duan, Ma, Zhang, Han, Guo, Wang, Phys. Rev. D 80 (2009) 014022 Duan, Zhang, Ma, Han, Guo, Wang, Chin. Phys. Lett. 28 (2011) 111401 Maltoni, Pagani, Tsinikos, JHEP 02 (2016) 113

■ NLO EW corrections → Significant effects in high energy region due to EW Sudakov effect

Duan, Zhang, Wang, Song, Li, Phys. Lett. B 766 (2017) 102

• *Complete NLO predictions*

Pagani, Shao, Tsinikos, Zaro, JHEP 09 (2021) 155

Approximate NNLO with soft-gluon corrections added to NLO (QCD + EW)

Kidonakis, Tonero, Phys. Rev. D 107 (2023) 034013

THEORETICAL PREDICTIONS

PREDICTIONS WITH TOP-QUARK DECAYS

- NLO QCD predictions matched with parton shower programs
 - Top-quark decays treated in parton-shower approximation omitting spin correlations & photon emission in parton-shower evolution

Kardos, Trocsanyi, JHEP 05 (2015) 090

- NLO QCD with decays in NWA
 - Double-resonant top-quark contributions + unstable *t* & *W* restricted to on-shell states
 - NLO spin correlations & photon radiation off charged top-quark decay products

Melnikov, Schulze, Scharf, Phys. Rev. D 83 (2011) 074013 Bevilacqua, Hartanto, Kraus, Weber , Worek, JHEP 03 (2020) 154

- NLO QCD with full off-shell effects
 - Double-, single- & non-resonant contributions + interference effects + Breit-Wigner propagators
 - NLO spin correlations & photon radiation off charged top-quark decay products

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 10 (2018) 158

• Complete NLO predictions in NWA

THEORETICAL PREDICTIONS

PREDICTIONS WITH STABLE TOP QUARKS

NLO QCD corrections

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro, JHEP 07 (2014) 079 Maltoni, Pagani, Tsinikos, JHEP 02 (2016) 113

NLO EW corrections

Pagani, Shao, Tsinikos, Zaro, JHEP 09 (2021) 155

PREDICTIONS WITH TOP-QUARK DECAYS

 NLO QCD predictions matched with parton shower programs omitting spin correlations & photon emission in parton-shower evolution or with LO spin correlations only

> Kardos, Trocsanyi, Nucl. Phys. B 897 (2015) 717 Deurzen, Frederix, Hirschi, Luisoni, Mastrolia, Ossola, Eur. Phys. J. C 76 (2016) 221

NLO QCD with decays in NWA

Stremmer, Worek, JHEP 08 (2023) 179

• *Complete NLO predictions in NWA*

Stremmer, Worek e-Print: 2403.03796 [hep-ph]

LO₁

• LO₁: Dominant contributions at $\mathcal{O}(\alpha_s^2 \alpha^{4+n_{\gamma}})$ where n_{γ} is number of photons appearing in Born-level process

• Typical QCD production of top-quark pair with photons, which leads to the following partonic subprocesses

$$gg \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \,,$$
$$q\bar{q}/\bar{q}q \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \,, \qquad b\bar{b}/\bar{b}b \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \,,$$

$LO_2 \& LO_3$

• LO₂: Contributions at $\mathcal{O}(\alpha_s^1 \alpha^{5+n_\gamma})$

• LO₃: Purely EW induced production of top-quark pair at $\mathcal{O}(\alpha^{6+n_{\gamma}})$

- Interference between gluon mediated diagrams with Z/γ mediated ones vanishes due to colour for qq initial state
- Interference does not vanish for *bb* due to *t*-channel diagrams with intermediate W boson
- When CKM matrix is not diagonal these contributions for *qq* initial state can also be non-zero but are CKM-suppressed
- Suppressed by power coupling & gluon PDF does not enter this contribution at all

$$\mathrm{LO} = \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3$$

NLO₁

• NLO₁: Dominant higher-order corrections at NLO arise from QCD corrections to LO₁ at $O(\alpha_s^3 \alpha^{4+n_\gamma})$

With following partonic subprocesses

$$\mathrm{NLO}_{\mathrm{QCD}} = \mathrm{LO}_1 + \mathrm{NLO}_1$$

$$\begin{split} gg \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \, g \,, \\ q\bar{q}/\bar{q}q \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \, g \,, \\ gq/qg \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \, q \,, \\ gb/bg \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \, b \,, \\ gb/bg \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \, b \,, \\ gb/\bar{b}g \to \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b} \, \gamma(\gamma) \, b \,, \end{split}$$

NLO₂ & NLO₃ & NLO₄

- NLO₂ & NLO₃: cannot be completely separated into parts with only QCD or EW corrections
- NLO₄: NLO EW corrections to LO₃

- NLO₂ @ $\mathcal{O}(\alpha_s^2 \alpha^{5+n_\gamma})$
 - NLO EW corrections to LO₁
 - NLO QCD corrections to LO₂

$$NLO_{QCD+EW} \equiv LO_1 + NLO_1 + NLO_2$$

WE INCLUDE ALL CONTRIBUTIONS

 $NLO = LO_1 + LO_2 + LO_3 + NLO_1 + NLO_2 + NLO_3 + NLO_4$

 $\mathrm{NLO}_{\mathrm{prd}} = \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3 + \mathrm{NLO}_1 + \mathrm{NLO}_{2,\mathrm{prd}} + \mathrm{NLO}_{3,\mathrm{prd}} + \mathrm{NLO}_{4,\mathrm{prd}}$

COMPUTATIONAL FRAMEWORK

VIRTUAL CORRECTIONS: HELAC-1LOOP & RECOLA+COLLIER

Actis, Denner, Hofer, Lang, Scharf, Uccirati, Comput. Phys. Commun. 214 (2017) 140 Denner, Lang, Uccirati, Comput. Phys. Commun. 224 (2018) 346

- Modifications in **RECOLA**
 - Partially unweighted events at Born used to calculate 1-loop corrections via reweighting techniques
 - Random polarisation method
 - Reduction to scalar integrals with OPP method with CUTTOOLS & ONELOOP

•
$$\alpha^n$$
 split into $\alpha^{n-n_{\gamma}}_{G_{\mu}} \alpha(0)^{n_{\gamma}} \rightarrow n_{\gamma} = 1 \ (n_{\gamma} = 2)$

- In calculation α^n set to $\alpha = \alpha_{G_{\mu}}$ first & rescaled $(\alpha(0)/\alpha_{G_{\mu}})^{n_{\gamma}} \rightarrow \sigma_{tt\gamma} & \sigma_{tt\gamma\gamma}$ reduced by 3% & 7%
- Renormalisation in mixed scheme
 - ✓ First performed renormalisation of all powers of α in G_{μ} scheme
 - ✓ Changed for $\alpha(0)^{n_{\gamma}}$ by introducing new counterterm

REAL EMISSION: HELAC-DIPOLES

- Two NLO QCD subtraction schemes: Catani-Seymour & Nagy-Soper
 - Soft and collinear singularities of QCD origin
 - Extended to include soft and collinear singularities of QED origin
 - Extended to perform NLO QCD & EW calculations in NWA \rightarrow Internal on-shell resonances

Ossola, Papadopoulos, Pittau, Nucl. Phys. B 763 (2007) 147 Ossola, Papadopoulos, Pittau, JHEP 03 (2008) 042

• BOTH FULL OFF-SHELL & NWA \rightarrow OUTPUT

- Predictions stored as partially unweighted "events" → *ROOT-Ntuples Files & Les Houches Files*
- Each "event" provided with supplementary matrix element & PDF information
- Results for different scale settings & PDF choices by can be obtained by reweighting
- Different observables and/or binning can be provided + more exclusive cuts \rightarrow With caveat

LHC SETUP

- Inclusive cuts
- NLO NNPDF3.11uxQED PDF → When both higher-order QCD and EW corrections & γ-initiated subprocesses are considered
- IR-safe anti-k_T jet algorithm with R= 0.4
- Smooth photon isolation prescription → Event is rejected unless below condition is fulfilled

S. Frixione, Phys. Lett. B429 (1998) 369

$$\sum_{i} E_{Ti} \Theta(R - R_{\gamma i}) \le \epsilon_{\gamma} E_{T\gamma} \left(\frac{1 - \cos(R)}{1 - \cos(R_{\gamma j})} \right)^{n} \quad \text{for all } R \le R_{\gamma j} \text{ with } R_{\gamma j} = 0.4 \text{ and } \epsilon_{\gamma} = n = 1.$$

- Parameters *n* & ϵ_{γ} not restricted by any constraints
- Arbitrarily soft radiation inside cone around isolated photon allowed → Collinear (R → 0) radiation forbidden → Collinear splittings associated with fragmentation functions removed → Isolation applied in experimental analyses no longer reproduced

SMOOTH PHOTON ISOLATION PRESCRIPTION

$pp \rightarrow tt\gamma\gamma$

Stremmer, Worek, JHEP 08 (2023) 179

<i>n</i> = 1	$\sigma_{ m Full}^{ m NLO}~[m fb]$
$\epsilon_{\gamma} = 1.0$	$0.2973(3)^{+1.9\%}_{-5.4\%}$
$\epsilon_{\gamma} = 0.5$	$0.2832(7)^{+1.5\%}_{-4.2\%}$
$E_{T\gamma} \epsilon_{\gamma} = 10 \text{ GeV}$	$0.2666(8)^{+1.0\%}_{-7.2\%}$

Results for different parameter choices of smooth photon isolation prescription

l+jets decay channel

In *di-lepton* decay channel 3% -- 6%

- Dependence on $n & \epsilon_{\gamma}$ parameters is not irrelevant
- Could affect comparisons between theoretical predictions and experimental results
- Cross section is reduced by about 5% -- 10%
- Substantial differences due to high number of jets (up to 5) and/or photons (2)
- Differences similar in size or even larger than corresponding NLO scale uncertainties for this process

 $NLO_{QCD} = LO_1 + NLO_1$

- Impact of NLO QCD effects on differential distributions substantial
- Size of higher-order corrections and uncertainties depends on observable & scale choice

$NLO_{QCD} = LO_1 + NLO_1$

 $pp \rightarrow tt\gamma$

Production

$$d\sigma_{t\bar{t}\gamma}^{\text{NWA}} = d\sigma_{t\bar{t}\gamma} \, d\mathcal{B}_{t \to be^{+}\nu_{e}} \, d\mathcal{B}_{\bar{t} \to \bar{b}\mu^{-}\bar{\nu}\mu} \qquad \qquad \text{Decays} \\ + \, d\sigma_{t\bar{t}} \left(d\mathcal{B}_{t \to be^{+}\nu_{e}\gamma} \, d\mathcal{B}_{\bar{t} \to \bar{b}\mu^{-}\bar{\nu}\mu} + d\mathcal{B}_{t \to be^{+}\nu_{e}} \, d\mathcal{B}_{\bar{t} \to \bar{b}\mu^{-}\bar{\nu}\mu\gamma} \right)$$

Bevilacqua, Hartanto, Kraus, Weber, Worek, JHEP 03 (2020) 154

- Photon radiation in production & decays
- Integrated level @ NLO QCD
 - $p_{Tb} > 40 \; GeV, \, p_{T\gamma} > 25 \; GeV$
 - Prod. contribution $\rightarrow 57\%$
 - Decay contribution $\rightarrow 43\%$
- Differential level @ NLO QCD
 - Various phase-space regions with various effects

$NLO_{QCD} = LO_1 + NLO_1$

- Photon radiation in production & decays
- Integrated level @ NLO QCD
 - $p_{Tb} > 25 \ GeV, p_{T\gamma} > 25 \ GeV$
 - Mixed contribution $\rightarrow 44\%$
 - Prod. contribution $\rightarrow 40\%$
 - Decay contribution $\rightarrow 16\%$
- Differential level @ NLO QCD
 - Various phase-space regions with various effects

Stremmer, Worek, JHEP 08 (2023) 179

NLO_{QCD} & NLO_{PRD} & NLO

- Differences between NLO_{QCD} & NLO below 1%
- Differences between NLO_{prd} & NLO below 1%

		$\sigma_i \; [{ m fb}]$	Ratio to LO_1
LO_1	${\cal O}(lpha_s^2lpha^5)$	$55.604(8)^{+31.4\%}_{-22.3\%}$	1.00
LO_2	${\cal O}(lpha_s^1 lpha^6)$	$0.18775(5)^{+20.1\%}_{-15.4\%}$	+0.34%
LO_3	${\cal O}(lpha_s^0 lpha^7)$	$0.26970(4)^{+14.3\%}_{-16.9\%}$	+0.49%
NLO_1	${\cal O}(lpha_s^3 lpha^5)$	+3.44(5)	+6.19%
NLO_2	${\cal O}(lpha_s^2 lpha^6)$	-0.1553(9)	-0.28%
NLO_3	$\mathcal{O}(lpha_s^1 lpha^7)$	+0.2339(3)	+0.42%
NLO_4	${\cal O}(lpha_s^0 lpha^8)$	+0.001595(8)	+0.003%
LO		$56.061(8)^{+31.2\%}_{-22.1\%}$	1.0082
$\mathrm{NLO}_{\mathrm{QCD}}$		$59.05(5)^{+1.6\%}_{-5.9\%}$	1.0620
$\mathrm{NLO}_{\mathrm{prd}}$		$59.08(5)^{+1.5\%}_{-5.9\%}$	1.0626
NLO		$59.59(5)^{+1.6\%}_{-5.9\%}$	1.0717

Stremmer, Worek e-Print: 2403.03796 [hep-ph]

 $pp \rightarrow tt\gamma$

$$\label{eq:log} \begin{split} \mathrm{LO} &= \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3 \\ \\ \mathrm{NLO}_{\mathrm{QCD}} &= \mathrm{LO}_1 + \mathrm{NLO}_1 \\ \\ \mathrm{NLO} &= \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3 + \mathrm{NLO}_1 + \mathrm{NLO}_2 + \mathrm{NLO}_3 + \mathrm{NLO}_4 \end{split}$$

 $\mathrm{NLO}_{\mathrm{prd}} = \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3 + \mathrm{NLO}_1 + \mathrm{NLO}_{2,\mathrm{prd}} + \mathrm{NLO}_{3,\mathrm{prd}} + \mathrm{NLO}_{4,\mathrm{prd}}$

 $NLO_{prd} \rightarrow photon bremsstrahlung \& subleading NLO corrections in production only$

Ratio to LO_1 -0.1100 200 300 400 500 300 400 500600 0 $p_{T,b_1} \; [{ m GeV}]$ p_{T,γ_1} [GeV]

0.0

EW Sudakov logarithms in NLO₂ leads to reduction in tails of up to 10% compared to NLO_{OCD} result

Ratio to LO_1

600

0.0

0

100

200

- Random cancellations between $NLO_2 \& NLO_3 \rightarrow$ Should be considered together
- NLO_{prd} approximation models complete NLO result very well

 $\downarrow LO_2 \downarrow LO_3 \downarrow NLO_2 \downarrow NLO_3 \downarrow NLO_4$

200

100

0

500

600

400

300

 p_{T,b_1b_2} [GeV]

NLO_{QCD}

NLO_{prd}

 $\mu_0 = E_T / 4$

NLO_{QCD} & NLO_{PRD} & NLO

 $p \rightarrow t t \gamma \gamma$

 $\mathrm{LO} = \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3$

 $NLO_{QCD} = LO_1 + NLO_1$

 $\mathrm{NLO} = \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3 + \mathrm{NLO}_1 + \mathrm{NLO}_2 + \mathrm{NLO}_3 + \mathrm{NLO}_4$

 $\mathrm{NLO}_{\mathrm{prd}} = \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3 + \mathrm{NLO}_1 + \mathrm{NLO}_{2,\mathrm{prd}} + \mathrm{NLO}_{3,\mathrm{prd}} + \mathrm{NLO}_{4,\mathrm{prd}}$

 $NLO_{prd} \rightarrow photon bremsstrahlung \& subleading NLO corrections in production only$

- Differences between LO₁ & LO below 1%
- Differences between NLO_{QCD} & NLO below 1%
- Differences between NLO_{prd} & NLO below 1%

		$\sigma_i \; [{ m fb}]$	Ratio to LO_1
LO_1	${\cal O}(lpha_s^2lpha^6)$	$0.15928(3)^{+31.3\%}_{-22.1\%}$	1.00
LO_2	${\cal O}(lpha_s^1 lpha^7)$	$0.0003798(2)^{+25.8\%}_{-19.2\%}$	+0.24%
LO_3	${\cal O}(lpha_s^0 lpha^8)$	$0.0010991(2)^{+10.6\%}_{-13.1\%}$	+0.69%
NLO_1	${\cal O}(lpha_s^3 lpha^6)$	+0.0110(2)	+6.89%
NLO_2	${\cal O}(lpha_s^2 lpha^7)$	-0.00233(2)	-1.46%
NLO_3	${\cal O}(lpha_s^1 lpha^8)$	+0.000619(1)	+0.39%
NLO_4	${\cal O}(lpha_s^0 lpha^9)$	-0.0000166(2)	-0.01%
LO		$0.16076(3)^{+30.9\%}_{-21.9\%}$	1.0093
$\rm NLO_{QCD}$		$0.1703(2)^{+1.9\%}_{-6.2\%}$	1.0690
$\mathrm{NLO}_{\mathrm{prd}}$		$0.1694(2)^{+1.7\%}_{-5.9\%}$	1.0637
NLO		$0.1700(2)^{+1.8\%}_{-6.0\%}$	1.0674

Stremmer, Worek e-Print: 2403.03796 [hep-ph]

- NLO₂ can be as large as NLO_{QCD} scale uncertainties
- Potentially affecting comparison between theory & experiment

Stremmer, Worek e-Print: 2403.03796 [hep-ph]

SUMMARY

Impact of NLO QCD effects on differential distributions substantial

- Size of higher-order corrections & uncertainties depends on observable & scale choice
- Overall → Higher order NLO QCD corrections important
- EW Sudakov logarithms in NLO₂ leads to reduction in tails of up to 10% compared to NLO_{QCD} result
- Random cancellations between $NLO_2 \& NLO_3 \rightarrow$ Should be considered together
- NLO_{prd} approximation models complete NLO result very well
- NLO₂ can be as large as NLO_{QCD} scale uncertainties → Potentially affecting comparison between theory & experiment

$$LO = LO_1 + LO_2 + LO_3$$
$$NLO_{QCD} = LO_1 + NLO_1$$
$$NLO = LO_1 + LO_2 + LO_3 + NLO_1 + NLO_2 + NLO_3 + NLO_4$$

 $\mathrm{NLO}_{\mathrm{prd}} = \mathrm{LO}_1 + \mathrm{LO}_2 + \mathrm{LO}_3 + \mathrm{NLO}_1 + \mathrm{NLO}_{2,\mathrm{prd}} + \mathrm{NLO}_{3,\mathrm{prd}} + \mathrm{NLO}_{4,\mathrm{prd}}$

BACKUP

EXPERIMENTAL RESULTS

 $pp \rightarrow tt\gamma$

