

Top quark mass effect in Z boson pair production through gluon fusion

Based on arXiv:2101.12095 and works in progress with Christian Brønnum-Hansen and Marius Wiesemann.

Chen-Yu Wang | 2024-04-16 | Loops and Legs 2024

Outline

1. Motivation

2. Two-loop $gg \rightarrow ZZ$ with full m_t dependence

- Numerical IBP reduction
- Master integral evaluations in the kinematics space

3. Conclusion & Outlook

Motivation 00000 Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Motivation

- Higher experimental precision at the LHC requires more accurate theoretical predictions.
 - \rightarrow more loops
- As √s increases, massive particles in the loops become more important.
 - \rightarrow more masses
- Precision wish list Amoroso et al. 2020

process	known	desired
:	:	:
$pp ightarrow H + t\bar{t}$	$NLO_{QCD} + NLO_{EW}$	NNLO _{QCD}
:	:	:
pp ightarrow VV'	$NNLO_{QCD} + NNLO_{EW}$	NNLO _{QCD}
	$+ NLO_{QCD} (gg \text{ channel})$	(gg channel with massive loops)
:	:	:
$pp ightarrow tar{t}$	$NNLO_{QCD} + NLO_{EW}$	
	NLO _{QCD} (with decays)	NNLO _{QCD} (with decays)
	NLO _{EW} (with decays)	Czakon, Mitov, et al. 2021

Motivation •0000 Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Motivation

• background to $pp \rightarrow H^* \rightarrow WW/ZZ$, interference \rightarrow Higgs width Campbell et al. 2011a; Kauer and Passarino 2012; Caola and

Melnikov 2013; Campbell et al. 2014; Azatov et al. 2015

- anomalous gauge couplings
- gg channel: loop-induced: enters σ_{ppVV} at NNLO, enhanced by gluon flux & event selection Binoth et al. 2006; Campbell et al. 2011b
- massless NLO contribution: Caola, Melnikov, Röntsch, et al. 2015, 2016 $\geq 50\% \text{ to } \sigma_{ggZZ}, 50\% \text{ to } \sigma_{ggWW}$ $6 - 8\% \text{ to } \sigma_{ppZZ}, 2\% \text{ to } \sigma_{ppWW}$
- 3rd generation increases massless LO σ_{ggWW} by 10 13% $_{Binoth\ et\ al.\ 2006;\ Campbell\ et\ al.\ 2011a}$
- dominant contribution for high p_T Campbell et al. 2011a

Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Campbell et al. 2011a

Conclusion	&	Outlook
0		

$gg \rightarrow ZZ$: Progress

- LO: one-loop Glover and Bij 1989; Kao and Dicus 1991; Duhrssen et al. 2005; Binoth et al. 2006
- NLO real: one-loop Agrawal and Shivaji 2012; Melia et al. 2012; Campanario et al. 2013
- NLO virtual s-channel Higgs: $gg \rightarrow H^* \rightarrow VV$ Spira et al. 1995; Harlander and Kant 2005; Binoth et al. 2006; Aglietti et al. 2007; Anastasiou et al. 2007
- NLO virtual: two-loop massless: gg
 ightarrow VV Caola, Henn, et al. 2015; Manteuffel and Tancredi 2015
- NLO virtual: two-loop massive:
 - region expansions: gg
 ightarrow ZZ Melnikov and Dowling 2015; Gröber et al. 2019; Davies, Mishima, Steinhauser, and Wellmann 2020
 - full m_t dependence: gg
 ightarrow ZZ Agarwal, Jones, and Manteuffel 2020; Brønnum-Hansen and Wang 2021
- Phenomenology studies: Caola, Melnikov, Röntsch, et al. 2015; Caola, Dowling, et al. 2016; Grazzini et al. 2016; Alioli, Ferrario Ravasio, et al. 2021; Buonocore et al.

2022; Agarwal, Jones, Kerner, et al. 2024.

Motivation ⊙⊙●⊙⊙	Two-loop $gg \rightarrow ZZ$ with full m_t dependence	Conclusion & Outlook 0

Analytic or alternative

Analytic

- deeper understanding (e.g. Parke-Taylor)
- fast, precise evaluation (e.g. Li_n , $_pF_q$, $K(\lambda)$, MPL, ...)
- gg
 ightarrow ZZ [Federico Coro], $Vgq\overline{q}$ [Cesare Carlo Mella]

Alternatives

- region expansions: $gg \rightarrow ZZ$ Melnikov and Dowling 2015; Davies, Mishima, Steinhauser, and Wellmann 2020, $gg \rightarrow ZH$ Davies, Mishima, and Steinhauser 2020, $gg \rightarrow HH$ Davies, Herren, et al. 2022; Davies, Schönwald, et al. 2023 [Hantian Zhang]
- sector decomposition: $gg \rightarrow HH$ Borowka, Greiner, et al. 2016 [Matthias Kerner], $gg \rightarrow ZZ$ Agarwal, Jones, and Manteuffel 2020, $gg \rightarrow ZH$ Chen, Heinrich, et al. 2020
- differential equations: $gg \rightarrow t\bar{t}$ Chen, Czakon, et al. 2018, $gg \rightarrow H$ Czakon and Niggetiedt 2020; Niggetiedt and Usovitsch 2024 [Marco Niggetiedt], $gg \rightarrow HH$ Davies, Herren, et al. 2022 [Joshua Davies]
- dispersion relation: $e^+e^- o ZH$ song and Freitas 2021; Freitas and Song 2023 [Ayres Freitas]

• combined: $gg \rightarrow f$	HH Davies, Heinrich, et al. 2019, $gg ightarrow ZH$ Chen, Davies, et al. 2022	
lotivation	Two-loop $gg \rightarrow ZZ$ with full m_t dependence	Conclusion & Outlook
00000	000000000	0

Analytic or numeric?

Analytic

- deeper structure (e.g. Parke-Taylor)
- wider applications (e.g. changing parameters)

Alternatives

fast numerical method that produces **arbitrary precision** result good **interpolation** algorithm / importance sampling \Rightarrow in the parameter space

- Numeric IBP reduction: set masses and kinematic variables to rational numbers
- Numeric DE evaluation: simple boundary condition + arbitrary precision Lee et al. 2018; Liu, Ma, and Wang 2018; Abreu et al. 2020; Hidding 2020; Moriello 2020

Motivation 0000● Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Diagrams

- Diagrams generated in QGRAF Nogueira 1993 and processed in FORM Vermaseren 2000; Kuipers et al. 2015; Ruijl et al. 2017
- Decomposition in colour factors: $A = \delta^{AB} \left[C_A A^{[C_A]} + C_F A^{[C_F]} + A^{[\Delta^2]} \right]$
- γ_5 scheme:
 - \triangle^2 diagrams: Larin scheme Larin and Vermaseren 1991; Moch et al. 2015.
 - two-loop ZZ: naive scheme, thanks to Furry's theorem.
- IR structure: $A^{(2)}(\epsilon,\mu) = I^{(1)}(\epsilon,\mu)A^{(1)}(\epsilon,\mu) + F^{(2)}(\epsilon,\mu)$. Catani 1998

Motivation 00000

Two-loop $gg \rightarrow ZZ$ with full m_t dependence ••••••••••

Diagrams

- Diagrams generated in QGRAF Nogueira 1993 and processed in FORM Vermaseren 2000; Kuipers et al. 2015; Ruijl et al. 2017
- Decomposition in colour factors: $A = \delta^{AB} \left[C_A A^{[C_A]} + C_F A^{[C_F]} + A^{[\Delta^2]} \right]^{-1}$
- γ_5 scheme:
 - \triangle^2 diagrams: Larin scheme Larin and Vermaseren 1991; Moch et al. 2015.
 - two-loop ZZ: naive scheme, thanks to Furry's theorem.
- IR structure: $A^{(2)}(\epsilon,\mu) = I^{(1)}(\epsilon,\mu)A^{(1)}(\epsilon,\mu) + F^{(2)}(\epsilon,\mu)$. Catani 1998

Motivation 00000

Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Projection

IBP reduction: KIRA & FireFly

Reduction performed at each phase space point with KIRA Klappert, Lange, et al. 2020; Lange et al. 2021 & FireFly Klappert and Lange 2020; Klappert, Klein, et al. 2021:

- \blacksquare 21 families with highest rank 4 \rightarrow 205 MIs + crossings.
- Parametric only in d, numeric (s, t, m_t, m_Z) :
 - $m_t = 173 \text{ GeV}, m_Z = 91.1876 \text{ GeV}.$
 - Rational values for s, t.
- Avoid non-factorisable denominators Smirnov and Smirnov 2020; Usovitsch 2020.
- Comparing with (semi-)analytical reduction:
 - Lower the memory/storage consumption significantly.
 - Straightforward parallelisation.

Motivation 00000

IBP reduction: KIRA & FireFly

- Numerical reduction with KIRA & FireFly.
- For each phase space point: \sim 3 CPU hours, \sim 2 GB memory.
- Rooms for improvement:
 - IBP system only needs to be generate once \Rightarrow
 - Generate analytic IBP system with KIRA.
 - IBP system contains redundant relations \Rightarrow
 - Simplify the system with RATRACER. [Vitaly Magerya]
 - We don't need the full rational expression in terms of $d \Rightarrow$
 - Expand in terms of ε before reconstruction with RATRACER.
 - Truncate irrelevant coefficients according to MI evaluations.

Motivation 00000 Two-loop $gg \rightarrow ZZ$ with full m_t dependence

IBP reduction: KIRA & RATRACER & FireFly

Motivation
00000

Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Master integral evaluation

- Based on the **auxiliary mass flow method** Liu, Ma, and Wang 2018; Liu, Ma, Tao, et al. 2020; Liu and Ma 2022 $I \propto \lim_{\eta \to 0^+} \int \prod_{i=1}^2 \mathrm{d}^d k_i \prod_{a=1}^9 \frac{1}{[q_a^2 - (m_a^2 - \dot{\eta})]^{\nu_a}}$
- Add an imaginary part to the top quark mass

$$m_t^2
ightarrow m_t^2 - i\eta$$
.

Solve differential equations w.r.t the mass

$$\partial_x I = MI, \quad x \propto -i\eta$$

with boundary condition at $x \to -i\infty$. Physical mass at $x \to 0$.

Motivation 00000 Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Master integral evaluation

 η

$$s=rac{4m_Z^2}{1-eta^2},\quad t=m_Z^2-rac{s}{2}\left(1-eta\cos heta
ight).$$

- For each phase space point: 20 digits $\sim 1 \ {\rm CPU} \ {\rm hour}.$
- Arbitrary precision ensures stable evaluation in the singular region.
- Straightforward parallelisation.
- Solving differential equation in the kinematic space.

Motivation 00000

 $\cos \theta$

Two-loop $gg \rightarrow ZZ$ with full m_t dependence

β

 p_2

$$s=rac{4m_Z^2}{1-eta^2},\quad t=m_Z^2-rac{s}{2}\left(1-eta\cos heta
ight).$$

Faster master integral evaluation

- Solve for a few reference points from the boundary conditions, then transport in the parametric space.
- For rectangular grid, series expansion along one dimension enables faster evaluation.

Motivation 00000 Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Faster master integral evaluation

Singularities in the parametric space $(\beta, \cos \theta)$.

- Solve for a few reference points from the boundary conditions, then transport in the parametric space.
- For rectangular grid, series expansion along one dimension enables faster evaluation.
- \bullet For each phase space point: 20 digits ~ 1 CPU minute on average.

Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Cross-checking

• $\sqrt{s} \approx 210 \text{ GeV}$

- ${}^{\bullet}~\theta\approx 114^{\circ}$
- $\mu = m_Z$

CA		ϵ^{-2}	ϵ^{-1}
LLLL	$A^{(2)}/A^{(1)}$	$1.00000000008 - 7.6 \cdot 10^{-13}i$	0.8304916142577 + 3.229874368770 <i>i</i>
	IR pole	1.000000000000	0.8304916142539 + 3.229874368771 <i>i</i>
LRLL	$A^{(2)}/A^{(1)}$	$1.000000000009 - 1.4 \cdot 10^{-12}i$	0.2359507533 <mark>599</mark> + 2.885154863850 <i>i</i>
	IR pole	1.000000000000	0.2359507533772 + 2.885154863852 <i>i</i>

IR divergence matches Catani's IR operator Catani 1998.

$$\mathbf{I}^{(1)}(\epsilon,\mu)A^{(1)}(\epsilon,\mu) = \frac{e^{\epsilon\gamma_{E}}}{\Gamma(1-\epsilon)}\left(\frac{C_{A}}{\epsilon^{2}} + \frac{\frac{11}{6}C_{A}}{\epsilon}\right)\left(\frac{\mu^{2}e^{i\pi}}{s}\right)^{\epsilon}A^{(1)}(\epsilon,\mu)$$

- Cross-checking:
 - Master intergrals against pySecDec Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, and Zirke 2018; Borowka, Heinrich, Jahn, Jones, Kerner, and Schlenk 2019
 - Finite terms against Agarwal, Jones, and Manteuffel 2020 analytic IBP reduction & sector decomposition.
 - Finite terms against Davies, Mishima, Steinhauser, and Wellmann 2020 low- and high-energy expansions.
 - Form factors against ggvvamp Manteuffel and Tancredi 2015 in the massless m_t limit.

Helicity amplitudes

- $\frac{2 \operatorname{Re}[F^{(2)}A^{(1)*}]}{|A^{(1)}|^2}$ as a function of energy β and scattering angle $\cos \theta$.
- Massive boson polarisation vectors written in terms of decay currents

$$\epsilon_{3,L}^{*\mu} = \langle 5|\gamma^{\mu}|6], \qquad \epsilon_{4,L}^{*\mu} = \langle 7|\gamma^{\mu}|8].$$

Motivation 00000 Two-loop $gg \rightarrow ZZ$ with full m_t dependence

Conclusion & Outlook

- We improved our calculation of two-loop helicity amplitudes for $gg \rightarrow ZZ$ with full m_t dependence.
- Numeric IBP reduction is efficient in practice for complicated multi-scale processes.
- Auxiliary mass flow method and solving differential equation in the kinematic space provide an efficient and precise way to evaluate multi-loop integrals.
- We are implementing the top quark mass corrections in the POWHEG-BOX framework Nason 2004; Frixione et al.

2007; Alioli, Nason, et al. 2010; Ježo and Nason 2015

Thank you for your attention!

Motivation 00000