Karlsruhe Institute of Technology

N3LO corrections to zero-jettiness soft function

Andrey Pikelner | Loops \& Legs 2024, Wittenberg
in collaboration with: Daniel Baranowski, Maximilian Delto, Kirill Melnikov and Chen-Yu Wang

Plan of the talk

I. Introduction and motivation
2. Double virtual corrections
3. One-loop corrections
4. Triple-real corrections
5. Results and conclusion

Motivation

- Differential calculation require a good handle on IR divergences, many schemes at NNLO
- Slicing scheme seems feasible at N3LO due to complexity of subtraction schemes

$$
\sigma(O)=\int_{0} \mathrm{~d} \tau \frac{\mathrm{~d} \sigma(O)}{\mathrm{d} \tau}=\int_{0}^{\tau_{0}} \mathrm{~d} \tau \frac{\mathrm{~d} \sigma(O)}{\mathrm{d} \tau}+\int_{\tau_{0}} \mathrm{~d} \tau \frac{\mathrm{~d} \sigma(O)}{\mathrm{d} \tau}
$$

- q_{T} subtraction scheme
[Catani,Grazzini'07]
- N -jettiness subtraction scheme
[Boughezal et al.'15][Gaunt et al.'15]
- SCET factorization theorem motivates us to consider jettiness as convenient slicing variable

$$
\lim _{\tau \rightarrow 0} d \sigma(O)=B_{\tau} \otimes B_{\tau} \otimes S_{\tau} \otimes H_{\tau} \otimes d \sigma_{L O}
$$

Difficulties with jettiness variable

- 0 -jettiness for the colorless final state is complicated due to the presence of min-function

$$
\tau=\sum_{i=1}^{m} \min _{q \in\{n, \bar{n}\}}\left[\frac{2 q \cdot k_{i}}{n \cdot \bar{n}}\right]=\sum_{i=1}^{m} \min \left\{\alpha_{i}, \beta_{i}\right\}
$$

- Definition which is more friendly for PS integration generates different configurations

$$
\begin{aligned}
\delta\left(\tau-\sum_{i=1}^{m} \min \left\{\alpha_{i}, \beta_{i}\right\}\right) & =\delta\left(\tau-\alpha_{1}-\alpha_{2}-\ldots\right) \theta\left(\beta_{1}-\alpha_{1}\right) \theta\left(\beta_{2}-\alpha_{2}\right) \ldots \\
& +\delta\left(\tau-\alpha_{1}-\beta_{2}-\ldots\right) \theta\left(\beta_{1}-\alpha_{1}\right) \theta\left(\alpha_{2}-\beta_{2}\right) \ldots
\end{aligned}
$$

Sudakov decomposition

$$
k_{i}=\frac{\alpha_{i}}{2} n+\frac{\beta_{i}}{2} \bar{n}+k_{i, \perp}, \quad k_{i} \cdot n=\beta_{i}, \quad k_{i} \cdot \bar{n}=\alpha_{i}, \quad n \cdot \bar{n}=2
$$

What is actually calculated?

- 0-jettiness in hadronic collisions is equal to Thrust or 2 -jettiness in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation or Higgs decay

- The limit $\tau \rightarrow 0$ corresponds to the soft limit of the squared amplitude - eikonal rules
- Need to include all possible real and virtual corrections to the amplitude squared

- Possible to combine different measurement function terms into unique configurations
- Perform integration over highly non-trivial region - all kinds of divergencies are possible

Predictions from RGE and NNLO results

Karlsruhe Institute of Technology

- General form of the bare result up to NNNLO, our goal: $\varsigma^{(3)}$

$$
S_{B}=\delta(\tau)+\frac{\alpha_{s}}{\tau^{1+2 \varepsilon}} S^{(1)}+\frac{\alpha_{s}^{2}}{\tau^{1+4 \varepsilon}} S^{(2)}+\frac{\alpha_{s}^{3}}{\tau^{1+6 \varepsilon}} S^{(3)}+\mathscr{O}\left(\alpha_{s}^{4}\right)
$$

- NNLO
[Monni, Gehrmann, Luisoni'11] [Kelley, Schabinger, Schwartz, Zhu'11][Baranowski' 20]
- Multiplicatively renormalizable in Laplace space after α_{s} UV renormalization

$$
\tilde{S}_{B}(u \mu)=\int_{0}^{\infty} \mathrm{d} \tau \mathrm{e}^{-u \tau} S_{B}\left(\tau, \alpha_{s, B} \rightarrow \alpha_{s}(\mu)\right), \quad \tilde{S}_{\text {ren }}=Z_{S} \tilde{S}_{B}
$$

- All poles in $S^{(3)}$ can be fixed from RGE and NNLO result with known anomalous dimensions

$$
\left(\frac{\partial}{\partial \log \mu}+\beta\left(\alpha_{s}\right) \frac{\partial}{\partial \alpha_{s}}\right) \log \tilde{S}_{\text {ren }}=-4 \Gamma_{\text {cusp }} \log (u \mu)-2 \Gamma_{\text {soft }}
$$

Color structures decomposition

Full result splitting according to the number of soft emissions

Required expansions up to higher orders in ε for $N^{2} L O$ soft function are known

Relative complexity of ingredients

- For each soft emission we have one θ-function in the measurement function making integration more complicated
- Most complicated denominators in RRR case make direct integration impossible
- Most complicated one-loop sub-integrals in the RRV case make direct integration impossible
- Unregulated divergencies in the RRR case

$C \sim \frac{1}{\left(k_{1} \cdot k_{2}\right)\left(k_{1} \cdot k_{3}\right)}$

$D \sim \frac{1}{\left(k_{1}+k_{2}+k_{3}\right)^{2}}$

RVV corrections

Two-loop corrections $r_{s}^{(2)}$ to single gluon emission soft current are known exactly in ε
[Duhr, Gehrmann'13]

Two contributions from different hemisphere emissions need to be integrated, $S_{g}^{(3)}=s_{2,0}+s_{\mathrm{I}, \mathrm{I}}+s_{0,2}$

One-loop corrections with double emission

- RRV squared amplitudes generated from scratch
- Results for one-loop soft current are known
- RRV result for gg final state is known
- Recalculation including $q \bar{q}$ final state
[Zhu'20][Czakon et al.'22]
[Chen,Feng, Jia, Liue ' 22]
[Baranowski et al.'24]

Multi-loop calculations inspired approach

- Reduction to the minimal set of master integrals
- Differential equations from IBP reduction

Configuration specific measurement functions

- We need to integrate squared amplitude in the soft limit with constraints from δ and θ functions
- δ and θ arguments are linear in momenta scalar products \rightarrow similarity with propagators
- Only two different configurations $n n$ and $n \bar{n}$ contribute

Same hemisphere

- RRV: α_{1}, α_{2} unconstrained

$$
\mathrm{d} \Phi_{\theta \theta}^{n n}=\delta\left(\tau-\beta_{1}-\beta_{2}\right) \theta\left(\alpha_{1}-\beta_{1}\right) \theta\left(\alpha_{2}-\beta_{2}\right)
$$

Different hemispheres

- RRV: α_{1}, β_{2} unconstrained

$$
\mathrm{d} \Phi_{\theta \theta}^{n \bar{n}}=\delta\left(\tau-\beta_{1}-\alpha_{2}\right) \theta\left(\alpha_{1}-\beta_{1}\right) \theta\left(\beta_{2}-\alpha_{2}\right)
$$

- Well known technique: reduction of integrals with δ-functions
- New technique: reduction of integrals with θ-functions

Modified reverse unitarity

- In dimensional regularisation system of IBP equation can be constructed by integration under integral sign

$$
\int \mathrm{d}^{d} I \frac{\partial}{\partial I_{\mu}}\left[v_{\mu} \cdot f(\{l\})\right], \quad \frac{\partial}{\partial k \cdot \bar{n}} \theta(k \cdot \bar{n}-k \cdot n)=\delta(k \cdot \bar{n}-k \cdot n)
$$

- IBP for integrals with θ-functions generate new auxiliary topologies, partial fractioning required

$$
\frac{\theta(k \cdot \bar{n}-k \cdot n)}{(k \cdot \bar{n})^{a}(k \cdot n)^{b}} \rightarrow \frac{\delta(k \cdot \bar{n}-k \cdot n)}{(k \cdot \bar{n})^{a}(k \cdot n)^{b}}
$$

$-\operatorname{RRR} \underbrace{\theta \theta \theta}_{\text {Level } 3} \rightarrow \underbrace{\delta \theta \theta+\theta \delta \theta+\theta \theta \delta}_{\text {Level } 2} \rightarrow \underbrace{\delta \delta \theta+\delta \theta \delta+\theta \delta \delta}_{\text {Level } 1} \rightarrow \underbrace{\delta \delta \delta}_{\text {Level } 0}$
$-\operatorname{RRV} \underbrace{\theta \theta}_{\text {Level } 2} \rightarrow \underbrace{\delta \theta+\theta \delta}_{\text {Level } 1} \rightarrow \underbrace{\delta \delta}_{\text {Level } 0}$

Details of IBP reduction

- Many integrals can be mapped on a small unique set, same symmetries as loop integral

$$
\theta(A) \rightarrow \frac{1}{A-m_{\theta}^{2}}, \quad \delta(A) \rightarrow \frac{1}{A-m_{\delta}^{2}}
$$

- User-defined system reduction option available in Kira
- Complexity of master integrals after IBP reduction
- RRR: number of θ-functions, complexity of gluon propagators
- RRV: number of θ-functions, complexity of one-loop integral
- No $\theta \ldots \theta$ master integrals for both RRR and RRV same hemisphere configurations

RRV master integrals calculation

- Number of MIs after IBP reduction of both configurations in RRV case

$\delta \delta$	$\delta \theta+\theta \delta$	$\theta \theta$
8	36	15

- Direct integration possible, except pentagon and box with $a_{3}=0$
- DE in auxiliary parameters for most complicated integrals

Original integrals from DE solution

Different strategy compared to RRR case: instead of $I=\lim _{z \rightarrow z_{0}} J(z)$ now $I=\int d z J(z)$
Intro
000000

RVV
RRV
RRR
0000000

RRV master integrals from differential equations

- For $\delta \delta$ integrals we introduce auxiliary paremeter x and solve DE system $\partial_{x} J(x)=M(\varepsilon, x) J(x)$

$$
I_{\delta \delta}=\int \mathrm{d}\left(k_{1} \cdot k_{2}\right) f\left(k_{1} \cdot k_{2}\right)=\int_{0}^{1} \mathrm{~d} x \int \mathrm{~d}\left(k_{1} \cdot k_{2}\right) \delta\left(k_{1} \cdot k_{2}-\frac{x}{2}\right) f\left(k_{1} \cdot k_{2}\right)=\int_{0}^{1} J(x) \mathrm{d} x
$$

- For $\delta \theta$ and $\theta \delta$ we use integral representation for θ-function and solve $D E$ system $\partial_{z} J(z)=M(\varepsilon, z) J(z)$

$$
\theta(b-a)=\int_{0}^{1} b \delta(z b-a) \mathrm{d} z, \quad I_{\delta \theta}=\int_{0}^{1} J(z) \mathrm{d} z
$$

- For $\theta \theta$ integrals PDE system in two variables $\mathbf{z}_{1}, \mathbf{z}_{2}$, no IBP reduction with θ-functions needed

$$
I_{\theta \theta}=\int_{0}^{1} \mathrm{~d} \mathrm{z}_{1} \int_{0}^{1} \mathrm{~d} \mathrm{z}_{2} J\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)
$$

Differential equations in canonical form

- For all auxiliary integrals it is possible to find alternative basis of integrals, such ε dependence of the DE system matrix factorizes completely: $M(\varepsilon) \rightarrow \varepsilon A$
- Straightforward solution for integrals in canonicaal basis in terms of GPLs
- Simpler boundary conditions fixing due to known general form of expansion near singular points

$$
g(z)=z^{a_{1}+b_{1} \varepsilon}\left(c_{1}+\mathscr{O}(z)\right)+z^{a_{2}+b_{2} \varepsilon}\left(c_{2}+\mathscr{O}(z)\right)+\ldots
$$

- Construction of subtraction terms to remove endpoint singularities in final integration

$$
\int_{0}^{1} J(z) \mathrm{d} \mathbf{z}=\int_{0}^{1} \underbrace{\left[J(z)-\mathbf{z}^{a_{i}+b_{i} \varepsilon} j_{0}(z)-(I-z)^{a_{k}+b_{k} \varepsilon} j_{l}(z)\right]}_{\varepsilon-\text { expanded }} \mathrm{d} z+\int_{0}^{1} \underbrace{\left(z^{a_{i}+b_{i} \varepsilon} j_{0}(z)-(I-z)^{a_{k}+b_{k} \varepsilon} j_{l}(z)\right)}_{\varepsilon-\text { exact }} \mathrm{d} \mathbf{z}
$$

Results RRV

- Results for separate configurations contain $\operatorname{Li}_{4}(1 / 2)$, but sum of two configurations has ζ_{n} only with maximal transcendental weight 6
- As the consequence of the exponentiation of soft emissions in Abelian gauge theories C_{R}^{3} in $S_{g g}$ and $C_{R}^{2} n_{f} T_{F}$ in $S_{q q}$ are absent
- From $N^{3} L O$ RRV $+N^{2} L O$ result its possible extract large n_{f} contribution to the renormalized soft function

Non-logarithmic part of the Laplace space result

$$
\tilde{S}_{\mathrm{nl}}^{(3)}=C_{R}\left(n_{f} T_{F}\right)^{2}\left[\frac{265408}{6561}-\frac{400}{243} \pi^{2}-\frac{51904}{243} \zeta_{3}+\frac{328}{1215} \pi^{4}+O\left(\frac{1}{n_{f}}\right)\right]
$$

Triple real emissions

Recalculated input for eikonal factor with partial fractioning and topology mapping

- $g g g=g g g+g c \bar{c}$, coincides with known expression in physical gauge
- $g q \bar{q}$ in agreement with
[Catani, Colferai, Torrini'19]
[Del Duca,Duhr,Haindl,Liu'23]

$$
\delta\left(\tau-\beta_{1}-\beta_{2}-\beta_{3}\right)
$$

Different hemispheres

$$
\delta\left(\tau-\beta_{1}-\beta_{2}-\alpha_{3}\right)
$$

- Same hemisphere result for ggg final state is known

RRR
-000000

Difficulty no. I

Integrals unregulated dimensionally

- Not all integrals appearing during IBP reduction are regulated dimensionally, initial integrals are regular
- Possible solution is to introduce additional regulator: $\mathrm{d} \Phi_{f_{1} f_{2} f_{3}}^{n n \bar{n}} \rightarrow \mathrm{~d} \Phi_{f_{1} f_{2} f_{3}}^{n n \bar{n}}\left(k_{1} \cdot n\right)^{v}\left(k_{2} \cdot n\right)^{v}\left(k_{3} \cdot \bar{n}\right)^{v}$

$$
I \sim \int_{0}^{1} \mathrm{~d} z \frac{\mathrm{I}}{\mathrm{z}} \mathbf{z}^{\varepsilon} \mathbf{z}^{-\varepsilon}(\ldots) \quad \longrightarrow \quad I(v) \sim \int_{0}^{1} \mathrm{~d} \mathbf{z} \frac{\mathrm{I}}{\mathbf{z}^{1+v}}(\ldots)
$$

- Same complexity level topologies $\partial_{k}(k \cdot n)^{v} \sim(k \cdot n)^{v} \frac{v}{(k \cdot n)}$, new denominator needs partial fractioning

Reduction of v-regulated integrals

Approaches to v-dependent IBP reduction problem (IBP with v is available)

I. Direct v-dependent reduction with additional variable
\boldsymbol{x} Time consuming and not flexible especially if basis change needed
\checkmark Minimal set of master integrals and full v-dependent solution
2. Filtering - remove from the IBP system all equations with potentially divergent integrals
\checkmark Very fast compared to the full v-dependent reduction
\boldsymbol{x} Potentially unreduced integrals, needs divergencies analysis for all integrals in the IBP system
3. Expansion - rewrite IBP system as a new system for I/vexpansion coefficients of integrals
\checkmark Fast reduction with control of divergencies
\mathbf{X} Additional divergencies of integrals from intermediate steps can appear

Importance of a good master integrals basis

Karlsruhe Institute of Technology

- From analysis of possible divergencies we consider ansatz $J_{a}=\sum_{k=k_{0}}^{\infty} J_{a}^{(k)} v^{k}$ with $k_{0}=-1$
- Solution of the IBP reduction problem for regular in I / v integrals I_{a} has the form

$$
I_{a}^{(0)}=R_{a b} J_{b}^{(0)}+D_{a} \tilde{b}_{b}^{(-1)}
$$

- We require a good basis to fullfill following conditions:
- Coefficients in front of master integrals are free from I/v poles
- Each master integral is a member of only one set J_{b} or \tilde{J}_{b}
- Candidates to the set J_{b} can be found from $v=0$ reduction
- Regular integrals $\int_{b}^{(0)}$ are calculated in a standard way, calculation of needed divergent parts $\tilde{\jmath}_{b}^{(-1)}$ is simplified, since only specific regions contribute

Difficulty no. 2

DE for RRR integrals with auxiliary mass

- Integrals for both $n n n$ and $n n \bar{n}$ configurations with denominator I / k_{123}^{2} are difficult to calculate
- Integrals are single scale, auxiliary parameter needed to construct DE system $I \rightarrow J\left(m^{2}\right)$
- Our solution is to make the most complicated propagator massive $\frac{1}{\left(k_{1}+k_{2}+k_{3}\right)^{2}} \rightarrow \frac{1}{\left(k_{1}+k_{2}+k_{3}\right)^{2}+m^{2}}$
- Calculation of boundary conditions simplifies in the limit $m^{2} \rightarrow \infty$
- Result for integrals of our interest from the solution for $J\left(m^{2}\right)$ in the limit $m^{2} \rightarrow 0$

Difficulties of the chosen strategy:

- Both points $m^{2} \rightarrow 0$ and $m^{2} \rightarrow \infty$ are singular points of the DE system
- Solution of the DE for integrals with massive denominator possible only numerically

Details of the DE solution

- Larger DE system size with ~ 650 equations for $n n \bar{n}$ configuration compared to ~ 150 for $n n n$
- Needed to calculate all contributing regions into boundary conditions in the $m^{2} \rightarrow \infty$ limit
$\sim\left(m^{2}\right)^{0}$
$\sim\left(m^{2}\right)^{-\varepsilon}$
$\sim\left(m^{2}\right)^{-2 \varepsilon}$
$1 / m^{2}$
$\alpha_{i} \sim m^{2}$
$\alpha_{i}, \alpha_{j} \sim m^{2}$
- For each large parameter $\alpha_{i} \sim m^{2}$ we remove $\theta \Longrightarrow$ additional IBP reduction of BC integrals possible
- Numerical solution of the DE system as a sequence of series expansions [Liu et al. '18][Chen et al. '22]

Difficulty no. 3

Direct integration of master integrals and boundary conditions

- We have calculated ~ 130 integrals without $\mathrm{I} / \mathrm{k}_{123}^{2}$ denominator and ~ 100 boundary conditions by direct integration with HyperInt
[Panzer'15]
- Summary of used techniques
I. Change variables to satisfy all constraints from δ and θ functions

2. Perform as many integrations as possible in terms of ${ }_{2} F_{1}$ and F_{1} functions with known argument transforms
3. Do remaining integrations in terms of ${ }_{p} F_{q}$ functions if possible
4. For final integral representation with minimal number of integrations and minimal set of divergencies we construct subtraction terms
5. Integrand with all divergencies subtracted is expanded in ε and integrated term by term with HyperInt
6. Subtraction terms are integrated in the same way

Remaining steps to complete calculation

- Numerical checks
- Extensive numerical checks of separate amplitude terms and/or master integrals are needed for RRR integrals with $1 / k_{123}^{2}$.
- Very complicated due to high degree of divergencies for both sector decomposition and MB approaches.
- More orders in ε
- Once agreement for highest poles is found we need to produce higher ε-order expansions from DE
- Also highly nontrivial since deep expansions for boundaries are needed due to spurious poles.
- More digits of precision
- When all needed ε-expansions are known we need to solve DE numerically to high precision to reconstruct analytical result.
- Reconstruction of each configuration independently is a good check of the obtained result. Basis can be complicated, e.g. GPLs with sixth-roots of unity alphabet as in the same-hemisphere case.

```
RRV
00000000
```

RRR 0000000

Conclusion

- Developed efficient reduction techniques for integrals with Heaviside θ-functions applicable for phase-space integrals with loops and additional regulators
- Developed powerfull approach for calculation of the most complicated RRR integrals by solving differential equations in auxuliary parameter numerically with high precision and calculated all needed boundary conditions
- Recalculated one-loop corrections for two gluon emission contribution to the soft function together with a new part for the quark pair emission
- We are ready to produce final numbers for renormalized $N^{3} L O$ zero-jettiness soft function
- Extensive numerical checks of the most complicated triple emission contributions are needed

Thank you for attention!

