

N3LO corrections to zero-jettiness soft function

Andrey Pikelner | Loops & Legs 2024, Wittenberg

in collaboration with: Daniel Baranowski, Maximilian Delto, Kirill Melnikov and Chen-Yu Wang

Karlsruhe Institute of Technology

Plan of the talk

- I. Introduction and motivation
- 2. Double virtual corrections
- 3. One-loop corrections
- 4. Triple-real corrections
- 5. Results and conclusion

Intro	RVV	RRV	RRR	Conclusion
000000		00000000	0000000	000

Motivation

Intro

- Differential calculation require a good handle on IR divergences, many schemes at NNLO
- Slicing scheme seems feasible at N3LO due to complexity of subtraction schemes

$$\sigma(\mathbf{O}) = \int_{0} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{O})}{\mathrm{d}\tau} = \int_{0}^{\tau_{0}} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{O})}{\mathrm{d}\tau} + \int_{\tau_{0}} \mathrm{d}\tau \frac{\mathrm{d}\sigma(\mathbf{O})}{\mathrm{d}\tau}$$

- q_{τ} subtraction scheme - N-jettiness subtraction scheme

- [Catani, Grazzini'07] [Boughezal et al. '15][Gaunt et al. '15]
- SCET factorization theorem motivates us to consider jettiness as convenient slicing variable

$$\lim_{\tau \to 0} \mathrm{d}\sigma(\mathbf{O}) = \mathbf{B}_{\tau} \otimes \mathbf{B}_{\tau} \otimes \mathbf{S}_{\tau} \otimes \mathbf{H}_{\tau} \otimes \mathrm{d}\sigma_{\mathrm{LO}}$$

Difficulties with jettiness variable

• 0-jettiness for the colorless final state is complicated due to the presence of min-function

$$\tau = \sum_{i=1}^{m} \min_{q \in \{n, \bar{n}\}} \left[\frac{2q \cdot k_i}{n \cdot \bar{n}} \right] = \sum_{i=1}^{m} \min\{\alpha_i, \beta_i\}$$

Definition which is more friendly for PS integration generates different configurations

$$\delta\left(\tau-\sum_{i=1}^{m}\min\{\alpha_{i},\beta_{i}\}\right)=\delta(\tau-\alpha_{1}-\alpha_{2}-\ldots)\theta(\beta_{1}-\alpha_{1})\theta(\beta_{2}-\alpha_{2})\ldots$$
$$+\delta(\tau-\alpha_{1}-\beta_{2}-\ldots)\theta(\beta_{1}-\alpha_{1})\theta(\alpha_{2}-\beta_{2})\ldots$$

Sudakov decomposition

$$\mathbf{k}_i = \frac{\alpha_i}{2}\mathbf{n} + \frac{\beta_i}{2}\overline{\mathbf{n}} + \mathbf{k}_{i,\perp}, \quad \mathbf{k}_i \cdot \mathbf{n} = \beta_i, \quad \mathbf{k}_i \cdot \overline{\mathbf{n}} = \alpha_i, \quad \mathbf{n} \cdot \overline{\mathbf{n}} = 2$$

Intro RVV RRV RRR Conv c●ooco o ooocooco ooocooco ooocooco ooocooco ooocooco ooocooco ooocooco ooocooco ooocooco ooocoocooco ooocoocooco ooocoocooco ooocoocoocooco ooocoocoocoocoocoocoocoocoocoocoocoocoo

What is actually calculated?

н, z, w[±],...

• 0-jettiness in hadronic collisions is equal to Thrust or 2-jettiness in e^+e^- annihilation or Higgs decay

- The limit $\tau \rightarrow 0$ corresponds to the soft limit of the squared amplitude eikonal rules
- Need to include all possible real and virtual corrections to the amplitude squared

γ,Ζ,...

- Possible to combine different measurement function terms into unique configurations
- Perform integration over highly non-trivial region all kinds of divergencies are possible

Intro RVV RRV RRR 000000 0 0000000 0000000 0000000	Conclusion 000
--	-------------------

Predictions from RGE and NNLO results

General form of the bare result up to NNNLO, our goal: S⁽³⁾

$$\mathbf{S}_{\mathbf{B}} = \delta(\tau) + \frac{\alpha_{s}}{\tau^{1+2\varepsilon}} \mathbf{S}^{(1)} + \frac{\alpha_{s}^{2}}{\tau^{1+4\varepsilon}} \mathbf{S}^{(2)} + \frac{\alpha_{s}^{3}}{\tau^{1+6\varepsilon}} \mathbf{S}^{(3)} + \mathcal{O}(\alpha_{s}^{4})$$

NNLO [Monni, Gehrmann, Luisoni'11] [Kelley, Schabinger, Schwartz, Zhu'11][Baranowski'20]
 Multiplicatively renormalizable in Laplace space after α_s UV renormalization

$$ilde{S}_{B}(u\mu) = \int_{0}^{\infty} \mathrm{d} au \mathrm{e}^{-u au} S_{B}(au, lpha_{\mathrm{s}, \mathrm{B}}
ightarrow lpha_{\mathrm{s}}(\mu)), \quad ilde{S}_{\mathrm{ren}} = Z_{\mathrm{S}} ilde{S}_{\mathrm{B}}$$

• All poles in S⁽³⁾ can be fixed from RGE and NNLO result with known anomalous dimensions

$$\left(\frac{\partial}{\partial \log \mu} + \beta(\alpha_{\rm s})\frac{\partial}{\partial \alpha_{\rm s}}\right)\log\tilde{S}_{\rm ren} = -4\Gamma_{\rm cusp}\log\left(u\mu\right) - 2\Gamma_{\rm soft}$$

Intro	RVV	RRV	RRR	Conclusion
ooo●oo		00000000	0000000	000

Color structures decomposition

Full result splitting according to the number of soft emissions

 $S_{N^3LO}=S_{\rm RRR}+S_{\rm RRV}+S_{\rm RVV}$

	C_R^3	$C_R^2 n_f T_F$	$C_R^2 C_A$	$C_R(n_f T_F)^2$	$C_R C_F n_f T_F$	$C_R C_A n_f T_F$	$C_R C_A^2$
$S_{ m RRR}$	+	+	+		+	?	?
$\boldsymbol{S}_{\rm RRV}$			+	+	+	+	+
$S_{ m RVV}$						+	+
S _{N³LO}	+	+	+	+	+	+	+
Poles	~	~	~	~	~	?	?

Required expansions up to higher orders in ε for N²LO soft function are known

	~		_	
Intro	RVV	RRV	RRR	Conclusion
oooo●o	o	00000000	0000000	000

[Baranowski'20]

Relative complexity of ingredients

Abelian RRR

- For each soft emission we have one θ-function in the measurement function making integration more complicated
- Most complicated denominators in RRR case make direct integration impossible
- Most complicated one-loop sub-integrals in the RRV case make direct integration impossible
- Unregulated divergencies in the RRR case

Denominators complexity

OIFFICULE.

RRV

RVV corrections

Two-loop corrections $r_{s}^{(2)}$ to single gluon emission soft current are known exactly in ε [Duhr, Gehrmann '13]

Two contributions from different hemisphere emissions need to be integrated, $S_g^{(3)} = s_{2,0} + s_{1,1} + s_{0,2}$

$$\mathbf{s}_{l,m} = \int \frac{\mathrm{d}^{d} k}{(2\pi)^{d-1}} \delta^{+} \left(k^{2}\right) \left[\delta(1-k\cdot n)\theta(k\cdot \overline{n}-k\cdot n) + \delta(1-k\cdot \overline{n})\theta(k\cdot n-k\cdot \overline{n})\right] \mathbf{w}_{l,m}(k)$$

One-loop corrections with double emission

- RRV squared amplitudes generated from scratch
- Results for one-loop soft current are known
- RRV result for gg final state is known
- Recalculation including qq final state

[Zhu'20][Czakon et al.'22] [Chen,Feng,Jia,Liue'22] [Baranowski et al.'24]

Multi-loop calculations inspired approach

- Reduction to the minimal set of master integrals
- Differential equations from IBP reduction

Intro	RVV	RRV	RRR	Conclusion
oooooo	o	●0000000	0000000	000

Configuration specific measurement functions

- ${\ }$ We need to integrate squared amplitude in the soft limit with constraints from δ and heta functions
- δ and θ arguments are linear in momenta scalar products \rightarrow similarity with propagators
- Only two different configurations nn and $n\overline{n}$ contribute

Same hemisphere

• RRV: α_1, α_2 unconstrained

 $\mathrm{d}\Phi_{\theta\theta}^{nn} = \delta(\tau - \beta_1 - \beta_2)\theta(\alpha_1 - \beta_1)\theta(\alpha_2 - \beta_2)$

• Well known technique: reduction of integrals with δ -functions

• New technique: reduction of integrals with θ -functions

Different hemispheres

• RRV:
$$\alpha_1, \beta_2$$
 unconstrained

$$\mathrm{d}\Phi_{\theta\theta}^{n\bar{n}} = \delta(\tau - \beta_1 - \alpha_2)\theta(\alpha_1 - \beta_1)\theta(\beta_2 - \alpha_2)$$

[Anastasiou,Melnikov'02]

[Baranowski, Delto, Melnikov, Wang'21]

Intro	RVV	RRV	RRR	Conclusion
000000	o	⊙●○○○○○○	0000000	000

Modified reverse unitarity

• In dimensional regularisation system of IBP equation can be constructed by integration under integral sign

$$\int \mathrm{d}^{d} I \frac{\partial}{\partial I_{\mu}} \big[\mathbf{v}_{\mu} \cdot f(\{l\}) \big], \qquad \frac{\partial}{\partial k \cdot \bar{n}} \theta \big(k \cdot \bar{n} - k \cdot n \big) = \delta \big(k \cdot \bar{n} - k \cdot n \big)$$

• IBP for integrals with θ -functions generate new auxiliary topologies, partial fractioning required

$$\frac{\theta(k \cdot \bar{n} - k \cdot n)}{(k \cdot \bar{n})^a (k \cdot n)^b} \to \frac{\delta(k \cdot \bar{n} - k \cdot n)}{(k \cdot \bar{n})^a (k \cdot n)^b}$$

 $- \operatorname{RRR} \underbrace{\theta \theta \theta}_{\operatorname{Level 3}} \rightarrow \underbrace{\delta \theta \theta + \theta \delta \theta + \theta \theta \delta}_{\operatorname{Level 2}} \rightarrow \underbrace{\delta \delta \theta + \delta \theta \delta + \theta \delta \delta}_{\operatorname{Level 1}} \rightarrow \underbrace{\delta \delta \delta}_{\operatorname{Level 1}} \rightarrow \underbrace{\delta \delta \theta}_{\operatorname{Level 1}} \rightarrow \underbrace{\delta \theta \theta}_{\operatorname$

Conclusion

Details of IBP reduction

Many integrals can be mapped on a small unique set, same symmetries as loop integral

$$\theta(A) \to \frac{1}{A - m_{\theta}^2}, \quad \delta(A) \to \frac{1}{A - m_{\delta}^2}$$

- User-defined system reduction option available in Kira
- Complexity of master integrals after IBP reduction
 - RRR: number of θ -functions, complexity of gluon propagators
 - RRV: number of θ -functions, complexity of one-loop integral
- \blacksquare No $\theta \dots \theta$ master integrals for both RRR and RRV same hemisphere configurations

Intro	RVV	RRV	RRR	Conclusion
000000	o	00000000		000

[Pak'11]

[Klappert et al. '21]

- Number of MIs after IBP reduction of both configurations in RRV case
 - $\begin{array}{cccc} \delta\delta & \delta\theta + \theta\delta & \theta\theta \\ 8 & 36 & 15 \end{array}$
- Direct integration possible, except pentagon and box with $a_3 = 0$
- DE in auxiliary parameters for most complicated integrals

Original integrals from DE solution

Different strategy compared to RRR case: instead of $I = \lim_{z \to z_0} J(z)$ now $I = \int dz J(z)$

Intro	RVV	RRV	RRR	Conclusion
000000	o	0000●000	0000000	000

RRV master integrals from differential equations

• For $\delta\delta$ integrals we introduce auxiliary paremeter x and solve DE system $\partial_x J(x) = M(\varepsilon, x)J(x)$

$$I_{\delta\delta} = \int \mathrm{d}(k_1 \cdot k_2) f(k_1 \cdot k_2) = \int_0^1 \mathrm{d}x \int \mathrm{d}(k_1 \cdot k_2) \,\delta(k_1 \cdot k_2 - \frac{x}{2}) f(k_1 \cdot k_2) = \int_0^1 J(x) \mathrm{d}x$$

• For $\delta\theta$ and $\theta\delta$ we use integral representation for θ -function and solve DE system $\partial_z J(z) = M(\varepsilon, z)J(z)$

$$\theta(b-a) = \int_0^1 b\delta(zb-a)dz, \quad I_{\delta\theta} = \int_0^1 J(z)dz$$

• For $\theta\theta$ integrals PDE system in two variables z_1, z_2 , no IBP reduction with θ -functions needed

$$I_{\theta\theta} = \int_0^1 \mathrm{d} z_1 \int_0^1 \mathrm{d} z_2 J(z_1, z_2)$$

Intro	RVV	RRV	RRR	Conclusion
000000	0	00000000	0000000	000

Differential equations in canonical form

- For all auxiliary integrals it is possible to find alternative basis of integrals, such ε dependence of the DE system matrix factorizes completely: $M(\varepsilon) \rightarrow \varepsilon A$
- Straightforward solution for integrals in canonicaal basis in terms of GPLs
- Simpler boundary conditions fixing due to known general form of expansion near singular points

$$g(z) = z^{a_1+b_1\varepsilon}(c_1+\mathscr{O}(z)) + z^{a_2+b_2\varepsilon}(c_2+\mathscr{O}(z)) + \dots$$

• Construction of subtraction terms to remove endpoint singularities in final integration

Results RRV

- Results for separate configurations contain $\text{Li}_4(1/2)$, but sum of two configurations has ζ_n only with maximal transcendental weight 6
- As the consequence of the exponentiation of soft emissions in Abelian gauge theories C_R^3 in S_{gg} and $C_R^2 n_f T_F$ in S_{qq} are absent
- From N^3LO RRV + N^2LO result its possible extract large n_f contribution to the renormalized soft function

Non-logarithmic part of the Laplace space result

$$\tilde{S}_{nl}^{(3)} = C_R \left(n_f T_F \right)^2 \left[\frac{265408}{6561} - \frac{400}{243} \pi^2 - \frac{51904}{243} \zeta_3 + \frac{328}{1215} \pi^4 + \mathcal{O}\left(\frac{1}{n_f}\right) \right]$$

Intro	RVV	RRV	RRR	Conclusion
000000	o	∞∞∞∞∞∞●	0000000	000

Triple real emissions

Recalculated input for eikonal factor with partial fractioning and topology mapping

- $ggg = ggg + gc\bar{c}$, coincides with known expression in physical gauge
- gqq in agreement with

Same hemisphere

RVV

Same hemisphere result for ggg final state is known

17/2518.04.2024Andrey Pikelner: N3LO soft function

 $\delta(\tau-\beta_1-\beta_2-\underline{\alpha_3})$

RRR

[Baranowski et al. '22]

[Catani, Colferai, Torrini'19]

[Del Duca, Duhr, Haindl, Liu'23]

Conclusio	٦
000	

Difficulty no. I Integrals unregulated dimensionally

- Not all integrals appearing during IBP reduction are regulated dimensionally, initial integrals are regular
- Possible solution is to introduce additional regulator: $d\Phi_{f_1f_2f_3}^{nn\bar{n}} \rightarrow d\Phi_{f_1f_2f_3}^{nn\bar{n}}(k_1 \cdot n)^{\nu}(k_2 \cdot n)^{\nu}(k_3 \cdot \bar{n})^{\nu}$

$$I \sim \int_{0}^{1} \mathrm{d}z \frac{1}{z} z^{\varepsilon} z^{-\varepsilon} (\dots) \longrightarrow I(\nu) \sim \int_{0}^{1} \mathrm{d}z \frac{1}{z^{1+\nu}} (\dots)$$

• Same complexity level topologies $\partial_k (k \cdot n)^{\nu} \sim (k \cdot n)^{\nu} \frac{\nu}{(k \cdot n)}$, new denominator needs partial fractioning

|--|

Reduction of ν -regulated integrals

Approaches to ν -dependent IBP reduction problem (IBP with ν is available)

- 1. Direct ν -dependent reduction with additional variable
 - X Time consuming and not flexible especially if basis change needed
 - ✓ Minimal set of master integrals and full ν -dependent solution
- 2. Filtering remove from the IBP system all equations with potentially divergent integrals
 - ✓ Very fast compared to the full ν -dependent reduction
 - X Potentially unreduced integrals, needs divergencies analysis for all integrals in the IBP system
- 3. Expansion rewrite IBP system as a new system for $1/\nu$ expansion coefficients of integrals
 - ✓ Fast reduction with control of divergencies
 - X Additional divergencies of integrals from intermediate steps can appear

Intro RVV RRV oocooo o oocooo	RRR Conclusio	on
----------------------------------	---------------	----

Importance of a good master integrals basis

• Solution of the IBP reduction problem for regular in 1/v integrals I_a has the form

$$I_{a}^{(0)} = R_{ab} J_{b}^{(0)} + D_{ab} \tilde{J}_{b}^{(-1)}$$

- We require a good basis to fullfill following conditions:
 - Coefficients in front of master integrals are free from $1/\nu$ poles
 - Each master integral is a member of only one set J_b or \widetilde{J}_b
 - Candidates to the set J_b can be found from v = 0 reduction
- Regular integrals $J_b^{(0)}$ are calculated in a standard way, calculation of needed divergent parts $\tilde{J}_b^{(-1)}$ is simplified, since only specific regions contribute

Difficulty no. 2

DE for RRR integrals with auxiliary mass

- Integrals for both *nnn* and *nnn* configurations with denominator $1/k_{123}^2$ are difficult to calculate
- Integrals are single scale, auxiliary parameter needed to construct DE system $I \rightarrow J(m^2)$
- Our solution is to make the most complicated propagator massive $\frac{1}{(k_1+k_2+k_3)^2} \rightarrow \frac{1}{(k_1+k_2+k_3)^2+m^2}$
- Calculation of boundary conditions simplifies in the limit $m^2
 ightarrow \infty$
- Result for integrals of our interest from the solution for $J(m^2)$ in the limit $m^2 \rightarrow 0$

Difficulties of the chosen strategy:

- Both points $m^2 \rightarrow 0$ and $m^2 \rightarrow \infty$ are singular points of the DE system
- Solution of the DE for integrals with massive denominator possible only numerically

Details of the DE solution

- Larger DE system size with ~ 650 equations for *nnn* configuration compared to ~ 150 for *nnn*
- Needed to calculate all contributing regions into boundary conditions in the $m^2
 ightarrow \infty$ limit

$$\frac{\sim (m^2)^0}{1/m^2} \qquad \frac{\sim (m^2)^{-\varepsilon}}{\alpha_i \sim m^2} \qquad \frac{\sim (m^2)^{-2\varepsilon}}{\alpha_i, \alpha_j \sim m^2}$$

- For each large parameter $\alpha_i \sim m^2$ we remove $\theta \implies$ additional IBP reduction of BC integrals possible
- Numerical solution of the DE system as a sequence of series expansions [Liu et al.'18][Chen et al.'22]

Intro	RVV	RRV	RRR	Conclusion
	o	0000000	○○○○○●○	000

Difficulty no. 3

- We have calculated ~ 130 integrals without $1/k_{123}^2$ denominator and ~ 100 boundary conditions by direct integration with HyperInt [Panzer'15]
- Summary of used techniques
 - I. Change variables to satisfy all constraints from δ and θ functions
 - 2. Perform as many integrations as possible in terms of $_{2}F_{1}$ and F_{1} functions with known argument transforms
 - 3. Do remaining integrations in terms of ${}_{p}F_{q}$ functions if possible
 - 4. For final integral representation with minimal number of integrations and minimal set of divergencies we construct subtraction terms
 - 5. Integrand with all divergencies subtracted is expanded in ε and integrated term by term with HyperInt
 - 6. Subtraction terms are integrated in the same way

Direct integration of master integrals and boundary conditions

Remaining steps to complete calculation

- Numerical checks
 - Extensive numerical checks of separate amplitude terms and/or master integrals are needed for RRR integrals with $1/k_{123}^2$.
 - Very complicated due to high degree of divergencies for both sector decomposition and MB approaches.
- More orders in ε
 - Once agreement for highest poles is found we need to produce higher ε -order expansions from DE
 - Also highly nontrivial since deep expansions for boundaries are needed due to spurious poles.

More digits of precision

- When all needed ε -expansions are known we need to solve DE numerically to high precision to reconstruct analytical result.
- Reconstruction of each configuration independently is a good check of the obtained result. Basis can be complicated, e.g. GPLs with sixth-roots of unity alphabet as in the same-hemisphere case.

Intro	RVV	RRV	RRR	Conclusion
000000	o	00000000	0000000	•oo

Conclusion

- Developed efficient reduction techniques for integrals with Heaviside θ -functions applicable for phase-space integrals with loops and additional regulators
- Developed powerfull approach for calculation of the most complicated RRR integrals by solving differential equations in auxuliary parameter numerically with high precision and calculated all needed boundary conditions
- Recalculated one-loop corrections for two gluon emission contribution to the soft function together with a new part for the quark pair emission
- We are ready to produce final numbers for renormalized N^3LO zero-jettiness soft function
- Extensive numerical checks of the most complicated triple emission contributions are needed

Intro 000000	RVV o	RRV 0000000	RRR	Conclusion 000
Intro	RVV	RRV	RRR	Conclusion

Thank you for attention!