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Introduction

Outline of talk:
1. Amplitudes in the High Energy Limit
2. From amplitudes to cross sections
3. Progress towards full next-to-leading logarithmic accuracy

High Energy Jets:
Factorisation of matrix elements using currents retains analytic properties such
as crossing symmetries
systematic power expansion of QCD amplitudes for real emissions
all-order leading and sub-leading logarithmic corrections Focus of this talk
matching, results. . .
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Regge theory

Regge theory describes scattering from a central potential in terms of the projections
on Legendre polynomial and states of definite orbital angular momentum (partial wave
analysis)

The analysis of analytic scattering amplitudes in
terms of Regge Theory: Regge (1959)
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Multi-Regge theory

Large s of course leads to the possibility of multi-
particle production
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Multi-Regge limit: Brower, DeTAR, Weis (1974)
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ti , |ti |, |ti | ∼ |tj |, |pti | ∼ |ptj |
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No underlying theory for strong interactions; derives constraints on the high energy
behaviour based on the constraints from an analytic scattering amplitude.

Jeppe R. Andersen NLL Contributions at High Energies Loops and Legs 24 4 / 24



Scaling of QCD Amplitudes

The scaling extends to QCD amplitudes involving also Higgs bosons, W, Z and photon production.
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The scaling for different kinematic evaluations of the same amplitude is exactly as predicted by
Regge theory applied to the planar graph connecting the rapidity-ordered configuration.

M. Heil, A. Maier, J.M. Smillie, JRA, arXiv:1706.01002
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Cross sections vs logarithmic ordering

pp→ (W → lν) + 3j
LHC@7 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4
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pp→ (W → lν) + 4j
LHC@7 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4
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pp → W3j J. Black,H. Brooks, A. Maier, J.M. Smillie, JRA, arXiv:2012.10310 pp → W4j
The cross sections really do follow the logarithmic ordering.
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Logartihmic split for other observables

pp→ (W → lν) + 3j
LHC@7 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4
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pp→ (W → lν) + 4j
LHC@7 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4
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pp → W3j J. Black,H. Brooks, A. Maier, J.M. Smillie, JRA, arXiv:2012.10310 pp → W4j
The logarithmic ordering is less good for pt -based observables – expect NLL to be as
important as LL, and therefore these corrections are necessary.
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Perurbative Corrections in the High Energy Limit

Building approximations used for all-order evaluations. Standard approach:

qQ → qQ : |M|2 ∝ s2 + u2

t2 .

In the high energy limit s ∼ u ≫ t → −k2
⊥ so σ̂ ∝ 1

k2
1,⊥k2

2,⊥
.

In the limit where all sij ≫ p2
t 2 → n (in LL configurations) factorise: σ̂ ∝

n∏
i

1
k2

i,⊥
.

Since the 2 → 3 real emision perturbative corrections have |M|2/s2 → constant for large
∆yfb ∼ log(s/p2

t ), integration over the rapidity of the middle parton will contribute a
correction αs∆yfb ∼ αs log(s/p2

t ).

The other orderings of momenta (and other processes) contribute sub-leading corrections
which can be included at next-to-leading order.
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Perurbative Corrections in the High Energy Limit

The virtual corrections also exhibit universal logarithmic terms in the colour octet channel

A1−loop
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Logarithmic structure predicted to all orders (BFKL, Regge, VDD,. . . ).

Control perturbative corrections of αn
s log

n(s/p2
t ) (leading logarithm) and αn+1

s logn(s/p2
t )

(NLL)
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Regge Theory and QCD

QCD allows for the calculation of the scattering amplitudes. The amplitudes are still
analytic, and a Regge analysis can be applied. The amplitude can be reconstructed (to
ensure logarithmic accuracy of the cross section) by effective vertices. These building
blocks can be calculated in QCD.

These are the impact factors and kernels in the BFKL language. So what is different with
High Energy Jets?

Some of the problems of standard analysis: Simplest example includes just one gluon

exchange qQ → qQ : |M|2 ∝ s2 + u2

t2 → 2s2

t2 , σ̂ ∝
n∏
i

1
k2

i,⊥
. HE limit does not describe

well even this simplest process within the phase space relevant for LHC phenomenology.
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Analytic Constraints

How did the high energy limit get it so wrong for such a simple process?
Need a method to “analytically reconstruct” the amplitude from the understanding of the
high energy behaviour.

M ∝ jµ(pa,p1) jµ(pb,p2)/t

Simple description; each current depends on momenta of relevant quarks only.
Same helicity: contributes s, opposite contributes u.
Lorentz invariance
Ensures crossing symmetry

Will require these constraints on the “analytic reconstruction” by insisting on contractions
of currents. Higher logarithmic corrections will require two-particle production currents. . .
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Calculation of two-particle current

Extract two gluon current from 2 → 3 amplitude (see thesis of E. Byrne):

Use colour basis which allows projection of the colour octet
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Calculation of two-particle current, II

Last term has colour contribution 0.
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Calculation of two-particle current, III

Most contributions already kinematically factorised. For some helicity configurations the
factorisation is exact.
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Calculation of two-particle current, IV

Gauge invariance: J evaluated with ϵµg → pµ
g is 0.
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Results for two-particle current

Final state particles distributed
at rapidities −∆/2,0,∆/2

Asymptotic limit fails to de-
scribe region relevant for LHC
experiment.

But in the Multi-Regge-
Kinematic limit (large invariant
mass between all particles) just
leading log accuracy (supple-
mented by analyticity) receives
good description for all ∆y

E. Byrne
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Results for two-particle current

Final state particles dis-
tributed at rapidities
−∆/2−0.25,−∆/2+0.25,∆/2

Asymptotic limit fails to de-
scribe region relevant for LHC
experiment.

But in the Quasi-Multi-Regge-
Kinematic limit (large invari-
ant mass requirement dropped
for exactly one pair) next-to-
leading log accuracy (supple-
mented by analyticity) achieves
good description for all ∆y

E. Byrne
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NLL components for Reggeisation

Consider again pp → W3j . Next-to-leading logarithmic corrections arise e.g. from the
amplitudes in the quasi-multi-Regge-kinematic limit, where the invariant mass between
one pair of partons is not large.

Amplitude expressed as M = Iµ(a,w ,1,2) Jµ(b,3). Full crossing symmetry, Lorentz and
gauge invariance in each component. Iµ(a,w ,1,2) calculated by projection onto colour
octet exchange in the t-channel.
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Higher Order Corrections

Can calculate higher order corrections with NLL components by explicit MC integration
over the regulated amplitudes, represented by a Reggeised graph

Virtual corrections encoded in the t-channel propagators.
Sub-processes and phase space points not reached with LL or NLL Reggeised
description are treated at fixed order.
Investigate impact on pt -distributions (traditionally hard to describe correctly in high
energy framework)
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Impact of NLL corrections for W3J

pp→ (W → lν) ≥ 3j
LHC@7 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4
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pp→ (W → lν) ≥ 3j
LHC@7 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4
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LL LL+subleading channels

J. Black,H. Brooks, A. Maier, J.M. Smillie, JRA, arXiv:2012.10310
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Impact of NLL corrections for W3J

pp→ (W → lν) ≥ 3j
LHC@7 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4
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Much less fixed order matching, much bigger resummation component. Final result of the
inclusive distribution changes by up to 25%. J. Black,H. Brooks, A. Maier, J.M. Smillie, JRA, arXiv:2012.10310
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Comparison to Data (WJJ)

pp→ (W → lν)+ ≥ 2j
LHC@8 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4
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The NLL terms included and improvement in matching are sufficient to ensure the predictions
agree well with data even in the most difficult regions of phase space. arXiv:2012.10310
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Comparison to Data (WJJ)

pp→ (W → lν)+ ≥ 2j
LHC@8 TeV
anti-kt, R = 0.4, pj,⊥ > 30 GeV, |yj| < 4.4
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The NLL terms included and improvement in matching are sufficient to ensure the predictions
agree well with data even in the most difficult regions of phase space. arXiv:2012.10310
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Conclusions

Unsurprisingly, the inclusion of sub-leading logarithms leads to
small changes in the leading regions of phase space
a better description in sub-leading regions of phase space

Hall-marks of a well-behaved perturbative expansion.
Further improvements ongoing, calculation of full NLL currents with both virtual and real
corrections using FKS regularisation.
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